RESUMO
The objective of the study was to examine the effect of soy lecithin (SL) and cholesterol loaded cryclodestrin (CLC) on cryo-survival of sperm cryopreserved in the presence or absence of seminal plasma in Saanen dairy goats. Tris-based dilutions containing various concentrations of SL (0, 0.5%, 1.0% or 2.0%) and CLC (0, 2.0 g/L, 4.0 g/L or 6.0 g/L CLC) were used to cryopreserve Saanen dairy goat sperm. The quality of frozen-thawed sperm, including progressive motility, viability, acrosome and plasma membrane integrity, as well as fertility were detected. Results found that the optimal combination of the two cryoprotectants was 1.0% SL+4.0 g/L CLC, which significantly increased progressive motility, viability, acrosome and plasma membrane integrity of frozen thawed sperm. The impact of the two cryoprotectants in combination was not affected by the presence of seminal plasma. The conception rates obtained after artificial insemination using sperm cryopreserved with and without seminal plasma were 88.89% and 91.67% (P > 0.05), respectively. The respective values for average number of litter sizes were 1.55 ± 0.17 and 1.56 ± 0.21 (P > 0.05). Therefore, this study improved the cryopreservation efficiency of goat semen, enhanced the sperm cryosurvival, and layed a foundation for the wide application of frozen goat semen.
Assuntos
Ciclodextrinas , Preservação do Sêmen , Masculino , Animais , Ciclodextrinas/farmacologia , Lecitinas/farmacologia , Lecitinas/metabolismo , Glycine max/metabolismo , Criopreservação/métodos , Sementes , Espermatozoides , Crioprotetores/farmacologia , Crioprotetores/metabolismo , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Colesterol/farmacologia , Colesterol/metabolismo , Cabras/metabolismo , Motilidade dos EspermatozoidesRESUMO
Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca(2+) and K(+), leading to an elevation in cytosolic Ca(2+) critical for activation of hyperactivated swimming motility. In mice, the Ca(2+) conductance (alkalization-activated Ca(2+)-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K(+) conductance (sperm pH-regulated K(+) current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca(2+) and K(+) conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions.
Assuntos
Canais de Cálcio/metabolismo , Fertilidade , Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/metabolismo , Subunidades Proteicas/metabolismo , Espermatozoides/metabolismo , Potenciais de Ação , Álcalis , Animais , Epididimo/fisiologia , Deleção de Genes , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Proteínas de Membrana/deficiência , Camundongos KnockoutRESUMO
Progestin hormones stimulate sperm motility in teleosts but their mechanisms of action remain unclear. Preliminary results suggest that progestin upregulation of sperm motility in southern flounder and several other marine species is mediated through a sperm membrane progestin receptor with the characteristics of membrane progestin receptor alpha (mPRα, also known as Paqr7b). The hypothesis that mPRα has an important role in progestin regulation of southern flounder sperm motility and fertility was tested in the present study. The specific mPRα agonist, 10-ethenyl-19-norprogesterone (Org OD 02-0, 100nM), mimicked the stimulatory actions of the endogenous progestin, 17,20ß, 21-trihydroxy-4-pregnen-3-one (20ß-S, 100nM) on flounder sperm motility. The concentration of the mPRα protein on sperm plasma membranes was positively correlated to sperm motility as well as the responsiveness of sperm to progestin stimulation. Acute in vitro progestin treatment of sperm with high mPRα protein levels increased both sperm motility and fertilization success in strip spawning experiments. However, in vitro progestin treatments were ineffective on sperm with low receptor abundance. A single injection of the superactive gonadotropin-releasing hormone analog (LHRHa, 100µg/kg) increased sperm motility and fertilization success in strip spawning experiments 72h post-injection which was accompanied by an increase in mPRα protein concentrations on sperm plasma membranes. These results provide clear evidence that southern flounder sperm hypermotility is mediated through mPRα. Stimulatory G proteins, but not inhibitory G proteins, were identified in flounder sperm plasma membrane fractions. The finding that treatment of flounder sperm plasma membrane fractions with either 20ß-S or Org OD 02-0 increases cAMP levels suggests progestins stimulate flounder sperm motility by activating an mPRα/stimulatory G protein/membrane adenylyl cyclase pathway. A similar mechanism has been identified in Atlantic croaker, suggesting that the signaling pathway mediated by mPRα in sperm is highly conserved in advanced teleosts. Collectively, our results indicate that progestin-stimulation of flounder sperm hypermotility and fertility is dependent on a sufficient concentration of mPRα which can be upregulated by in vivo LHRHa treatments. These findings potentially have practical applications for enhancing the fertility of male flounder broodstock.
Assuntos
Membrana Celular/metabolismo , Fertilização/efeitos dos fármacos , Linguado/fisiologia , Progestinas/farmacologia , Receptores de Progesterona/metabolismo , Motilidade dos Espermatozoides/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Cortodoxona/análogos & derivados , Cortodoxona/farmacologia , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Injeções , Masculino , Norprogesteronas/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
BACKGROUND: Ascorbic acid 2-glucoside (AA2G) is a stabilized form of ascorbic acid and a potent antioxidant. Ascorbic acid is present in the testes and epididymis and helps maintain the physiological integrity of reproductive organs. Its properties have been utilized to protect spermatozoa of different species from oxidative stress. MATERIALS AND METHODS: Spermatozoa of C57Bl/6J and C57Bl/6N strains were frozen and analyzed, after thawing, by supplementing the capacitation medium with AA2G, both in the presence and absence of methyl-ß-cyclodextrin (MBCD). The effect of treatment was evaluated by SCA System (Microptic) analyzing the velocity, vitality, morphology, and the DNA fragmentation. We also examined sperm capacitation (CTC), acrosome reaction (Coomassie Brillant Blue), and fertility (in vitro fertilization) of treated spermatozoa. RESULTS: AA2G improved sperm quality and fertility particularly in association with MBCD. We observed a significant increase of sperm motility, velocity, and vitality associated with an enhanced capacitation and acrosome reaction. These improvements resulted in a marked increase in in vitro fertilization success. Embryos obtained were cultured and reached normally the blastocyst stage. DISCUSSION: This study aimed to determine if AA2G could safeguard mouse spermatozoa during cryopreservation. We found a protective effect of AA2G that increased sperm survivability resulting in higher fertilization rate. CONCLUSION: This newly improved protocol shows potential for reanimating cryopreserved GEMMs stored in mouse biobanks and international repositories, such as the European Mouse Mutant Archive (EMMA). This can serve as a pivotal tool in fulfilling the 3Rs mission (replacement, reduction, and refinement), promoting ethical and humane research practices.
RESUMO
Spermatozoa were classically known as vehicles for the delivery of the paternal genome to the oocyte. However, in 1962, spermatozoa were discovered to carry significant amounts of RNA in them, which raised questions about the significance of these molecules in such a highly specialized cell. Scientific research in the last six decades has investigated the biological significance of sperm RNAs by various means. Irrespective of what sperm RNAs do, their presence in spermatozoa has attracted attention for their exploitation as biomarkers of fertility. Research in this direction started in the year 2000 and is still underway. A major hurdle in this research is the definition of the standard human sperm RNAome. Only a few normozoospermic samples have been analyzed to define the normal sperm RNAome. In this article, we provide a perspective on the suitability of sperm RNAs as biomarkers of fertility and the importance of defining the normal sperm RNAome before we can succeed in identifying RNA-based biomarkers of sperm quality and fertility. The identification of sperm RNA biomarkers of fertility can be exploited for quality screening of donor sperm samples, explain infertility in idiopathic cases, and RNA therapeutics for the treatment of male infertility.
RESUMO
The renin angiotensin system (RAS) appears to influence male fertility at multiple levels. In this work, we analyzed the relationship between the RAS and DNA integrity. Fifty male volunteers were divided into two groups (25 each): control (DNA fragmentation ≤20%) and pathological (DNA fragmentation >20%) cases. Activities of five peptidases controlling RAS were measured fluorometrically: prolyl endopeptidase (which converts angiotensin [A] I and A II to A 1-7), neutral endopeptidase (NEP/CD10: A I to A 1-7), aminopeptidase N (APN/CD13: A III to A IV), aminopeptidase A (A II to A III) and aminopeptidase B (A III to A IV). Angiotensin-converting enzyme (A I to A II), APN/CD13 and NEP/CD10 were also assessed by semiquantitative cytometry and quantitative flow cytometry assays, as were the receptors of all RAS components: A II receptor type 1 (AT1R), A II receptor type 2 (AT2R), A IV receptor (AT4R or insulin-regulated aminopeptidase [IRAP]), (pro)renin receptor (PRR) and A 1-7 receptor or Mas receptor (MasR) None of the enzymes that regulate levels of RAS components, except for APN/CD13 (decrease in fragmented cells), showed significant differences between both groups. Micrographs of RAS receptors revealed no significant differences in immunolabeling patterns between normozoospermic and fragmented cells. Labeling of AT1R (94.3% normozoospermic vs 84.1% fragmented), AT4R (96.2% vs 95.3%) and MasR (97.4% vs 87.2%) was similar between the groups. AT2R (87.4% normozoospermic vs 63.1% fragmented) and PRR (96.4% vs 48.2%) were higher in non-fragmented spermatozoa. These findings suggest that fragmented DNA spermatozoa have a lower capacity to respond to bioactive RAS peptides.
Assuntos
Sistema Renina-Angiotensina , Espermatozoides , Angiotensinas , Fragmentação do DNA , Humanos , Insulina , Masculino , Sistema Renina-Angiotensina/fisiologiaRESUMO
D-Aspartate (D-Asp) treatment improved the fertility of young male C57BL/6N mice in vivo revealing a direct role on capacitation, acrosome reaction, and fertility in vitro in young males only. We investigated whether the positive effect of D-Asp on fertility could be extended to adult males and evaluated the efficacy of a 2- or 4-week-treatment in vivo. Therefore, 20 mM sodium D-Asp was supplied in drinking water to males of different ages so that they were 9 or 16 weeks old at the end of the experiments. After sperm freezing, the in vitro fertilization (IVF) rate, the birth rate, hormone levels (luteinizing hormone (LH), epitestosterone, and testosterone), the sperm quality (morphology, abnormalities, motility, and velocity), the capacitation rate, and the acrosome reaction were investigated. Oral D-Asp treatment improves the fertilizing capability in mice regardless of the age of the animals. Importantly, a short D-Asp treatment of 2 weeks in young males elevates sperm parameters to the levels of untreated adult animals. In vivo, D-Asp treatment highly improves sperm quality but not sperm concentration. Therefore, D-Asp plays a beneficial role in mouse male fertility and may be highly relevant for cryorepositories to improve mouse sperm biobanking.
RESUMO
BACKGROUND: Genomic selection enables bulls with desirable characteristics to be identified at a young age, but sperm quality can be poor in the ejaculates of young bulls. Few studies have been done on post-thaw sperm quality in bulls less than 10 months old. The objective of this study was to determine the age at which post-thaw sperm quality was acceptable for artificial insemination. METHODS: Semen was collected by artificial vagina; samples containing 100-500 million spermatozoa/ml were frozen for this study. Post-thaw analyses of membrane integrity (MI), mitochondrial membrane potential (MMP), chromatin integrity, morphology, production of reactive oxygen species and sperm kinematics were made. RESULTS: The age at which ejaculates exceeded the breeding company's thresholds of acceptance varied considerably among individuals, with 285 days being the earliest. Morphology (p < 0.003), MI (p = 0.0096), high MMP (p = 0.043) and superoxide production (p = 0.0084) increased between the first and last ejaculates but reached acceptable levels at different ages for individual bulls. CONCLUSIONS: It was possible to obtain acceptable post-thaw sperm quality from samples even though sperm concentration was lower than the breeding company's threshold. Therefore, it might be feasible to use ejaculates earlier than is currently considered possible, by modifying semen handling protocols.
Assuntos
Análise do Sêmen , Preservação do Sêmen , Animais , Bovinos , Cromatina , Criopreservação/veterinária , Feminino , Fertilidade , Masculino , Espécies Reativas de Oxigênio , Sêmen , Análise do Sêmen/veterinária , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , SuperóxidosRESUMO
Mitochondria are vital organelles with a multifaceted role in cellular bioenergetics, biosynthesis, signaling and calcium homeostasis. During oxidative phosphorylation, sperm mitochondria generate reactive oxygen species (ROS) at physiological levels mediating signaling pathways essential for sperm fertilizing competence. Moreover, sperm subpopulation with active mitochondria is positively associated with sperm motility, chromatin and plasma membrane integrity, and normal morphology. However, the osmotic and thermal stress, and intracellular ice crystal formation generate excess ROS to cause mitochondrial dysfunction, potentiating cryoprotectant-induced calcium overload in the mitochondrial matrix. It further stimulates the opening of mitochondrial permeability transition pores (mPTP) to release pro-apoptotic factors from mitochondria and initiate apoptotic cascade, with a decrease in Mitochondrial Membrane Potential (MMP) and altered sperm functions. To improve the male reproductive potential, it is essential to address challenges in semen cryopreservation, precisely the deleterious effects of oxidative stress on sperm quality. During semen cryopreservation, the supplementation of extended semen with conventional antioxidants is extensively reported. However, the outcomes of supplementation to improve semen quality are inconclusive across different species, which is chiefly attributed to the unknown bioavailability of antioxidants at the primary site of ROS generation, i.e., mitochondria. Increasing evidence suggests that the targeted delivery of antioxidants to sperm mitochondria is superior in mitigating oxidative stress and improving semen freezability than conventional antioxidants. Therefore, the present review comprehensively describes mitochondrial-targeted antioxidants, their mechanism of action and effects of supplementation on improving semen cryopreservation efficiency in different species. Moreover, it also discusses the significance of active mitochondria in determining sperm fertilizing competence, cryopreservation-induced oxidative stress and mitochondrial dysfunction, and its implications on sperm fertility. The potential of mitochondrial-targeted antioxidants to modulate mitochondrial functions and improve semen quality has been reviewed extensively.
Assuntos
Antioxidantes , Preservação do Sêmen , Animais , Antioxidantes/farmacologia , Criopreservação/veterinária , Masculino , Mitocôndrias , Estresse Oxidativo , Análise do Sêmen/veterinária , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , EspermatozoidesRESUMO
According to various reports, current methods of sperm freezing destroy the integrity of the sperm plasma membrane and acrosome. This study aimed to determine the changes in the existence and location of three proteins, namely fertilin ß, IZUMO1, and P34H, in ram spermatozoa. By using frozen-thawed spermatozoa, ejaculated fresh spermatozoa, and testicular and epididymal spermatozoa (obtained from caput, corpus, and caudal regions), the localizations of the mentioned proteins were performed using signal labeling with indirect immunofluorescence, and the quantification of these proteins was compared using Western blot analyses. Moreover, protein localization and signal labeling in fresh and frozen-thawed spermatozoa subjected to in vitro capacitation and acrosome reaction were compared. Using chlortetracycline (CTC) staining, as expected, it was detected that after incubating for 4 hours under capacitating conditions related to the control sample (0 hour), capacitated and acrosome-reacted sperm were increased (p < 0.001). Frozen-thawed samples had a lower density and expression than the ejaculate samples. Expression was not obtained, except for IZUMO1, from samples that underwent in vitro capacitation/acrosome reactions. Expression of IZUMO1 was seen as an increasing band formation from the equatorial region through the acrosome, after in vitro capacitation. However, after the acrosome reaction, the band formation was only on the equatorial region. Region-specific differences of proteins at the kDa level were obtained using Western blot analysis and possible isoforms specific to ram spermatozoa or proteins with similar epitopes were expressed. Considering the changes in surface proteins in frozen-thawed sperm, it is suggested that fertilin ß and P34H can be used as fertility or freezability markers.
Assuntos
Fertilinas , Proteínas de Membrana , Capacitação Espermática , Espermatozoides , Desidrogenase do Álcool de Açúcar , Acrossomo , Reação Acrossômica , Animais , Imunoglobulinas , Masculino , OvinosRESUMO
Although cryopreservation of bull semen is widely used commercially in the livestock breeding industry, cryopreservation results in low fertility of bull sperm. As an important regulatory factor, the alteration of small non-coding RNA (sncRNA) profile during cryopreservation of bull sperm is not yet completely known. In the present study, we sequenced sncRNAs of frozen and fresh sperm to study the link of alteration of the sncRNA profiles (particularly in miRNAs and mRNA fragments) with low sperm fertility caused by cryopreservation. We identified 55 miRNAs and 526 mRNA fragments differentially expressed (DE) between frozen and fresh sperm. Subsequently, the functional analysis revealed that targeted genes of DE miRNAs in sperm had roles in the fertilization, ATP, and apoptosis. Instead, targeted genes of DE miRNAs in cow metaphase II oocyte were significantly enriched in the MAPK signaling pathway, autophagy-animal pathway, and mitophagy-animal pathway. Additionally, biological processes of DNA repair, spermatid development, response to temperature stimulus, and cellular response to DNA damage stimulus were enriched by mRNA fragments. In conclusion, we found that DE miRNAs or DE mRNA fragments in cryopreservation may influence the fertility of sperm, these findings will provide the reference to improve the cryopreservation technology of bull semen.
RESUMO
The kappa-opioid receptor (KOR) is involved in the regulation of the fertilizing capacity of human sperm. Recently, a testicular-specific protein family, SPANX-A/D, has also been found to be involved in regulating this process. In order to determine if KOR has a role in the regulation of sperm fertility through the SPANX-A/D protein family, we activated the kappa opioid receptor adding its selective agonist, U50488H to normozoospermic human spermatozoa. Then, we performed immunofluorescence assays and immunoprecipitation experiments followed by LC-MS/MS. According to our results, KOR activation may cause the translocation of SPANX-A/D into the nucleus of human spermatozoa. Phosphoproteomic studies show that KOR does not cause phosphorylation changes in SPANX-A/D residues. However, interactome assays demonstrate that KOR activation provokes changes in SPANX-A/D potential interactors involved in sperm motility, energy metabolism and nuclear processes. Taking these results into account, KOR may regulate human sperm fertility through SPANX-A/D protein family, modifying its subcellular location and interactions. Although further studies are needed, this finding could help us describing the molecular mechanisms underlying sperm fertility as well as developing new strategies for treating infertility.
Assuntos
Proteínas Nucleares/metabolismo , Receptores Opioides kappa/metabolismo , Espermatozoides/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espectrometria de Massas em TandemRESUMO
The possible impact of natural heat stress on animal fertility is currently a major concern for breeding companies. Here, we aimed to address this concern by determining the effects of natural heat stress on the fertility of Holstein bulls located in the Netherlands. Semen samples were collected from six bulls at two locations in March 2016 (low temperature-humidity index (THI) group; maximum THI of 51.8 and 55â¯at their respective locations) or August (high THI group; maximum THI of 77.9 and 80.5 during meiotic and spermiogenic stages of spermatogenesis, 42 to 14 days prior to semen collection). The effect of heat stress on semen quality was assessed by sperm morphology, motility, reactive oxygen species production, lipid peroxidation, viability, and DNA fragmentation. Moreover, we evaluated the development of embryos generated in vitro by low and high THI semen, and determined inner cell mass/trophectoderm ratio, apoptotic cell ratio, and embryonic gene expression in day-8 blastocysts. An increase in cell death (propidium iodide-positive cells; Pâ¯=â¯0.039) was observed in the high THI group (31.5%) compared to the low THI group (27.6%). Moreover, a decrease (Pâ¯<â¯0.001) was observed in the total blastocyst rates at day 7 post-insemination (15.3 vs 20.9%) and day 8 (23.2 vs 29.6%) in the high THI compared to the low THI group, respectively. There were no differences in the relative abundance of candidate transcripts examined. In conclusion, sperm samples from dairy bulls obtained during a period with higher THI had reduced viability and led to a decrease in blastocyst development and delayed hatching, compared to semen collected during a period with low THI.
Assuntos
Bovinos/fisiologia , Técnicas de Cultura Embrionária/veterinária , Fertilização in vitro/veterinária , Temperatura Alta , Umidade , Espermatogênese , Animais , Bovinos/embriologia , Sobrevivência Celular , Desenvolvimento Embrionário , Regulação da Expressão Gênica , Masculino , Motilidade dos Espermatozoides , EspermatozoidesRESUMO
AIMS: The sperm plasma membrane contains specific ion channels and transporters that initiate changes in Ca2+, Na+, K+ and H+ ions in the sperm cytoplasm. Ion channels are key regulators of the sperm membrane potential, cytoplasmic Ca2+ and intracellular pH (pHi), which leads to regulate motility, capacitation, acrosome reaction and other physiological processes crucial for successful fertilization. Expression of epithelial sodium channels (ENaC) and voltage-gated sodium channels (Nav) in human spermatozoa has been reported, but the role of Na+ fluxes sodium channels in the regulation of sperm cell function remains poorly understood. In this context, we aimed to analyze the physiological role of Nav channels in human sperm. MAIN METHODS: Motility and hyperactivation analysis was conducted by CASA analysis. Flow cytometry and spectrophotometry approaches were carried out to measure Capacitation, Acrosome reaction, immunohistochemistry for Tyr-residues phosporylation, [Ca2+]i levels and membrane potential. KEY FINDINGS: Functional studies showed that veratridine, a voltage-gated sodium channel activator, increased sperm progressive motility without producing hyperactivation while the Nav antagonist lidocaine did induce hyperactivated motility. Veratridine increased protein tyrosine phosphorylation, an event occurring during capacitation, and its effects were inhibited in the presence of lidocaine and tetrodotoxin. Veratridine had no effect on the acrosome reaction by itself, but was able to block the progesterone-induced acrosome reaction. Moreover, veratridine caused a membrane depolarization and modified the effect of progesterone on [Ca2+]i and sperm membrane potential. SIGNIFICANCE: Our results suggest that veratridine-sensitive Nav channels are involved on human sperm fertility acquisition regulating motility, capacitation and the progesterone-induced acrosome reaction in human sperm.
Assuntos
Fertilização/efeitos dos fármacos , Agonistas de Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Veratridina/farmacologia , Reação Acrossômica/efeitos dos fármacos , Adolescente , Adulto , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Lidocaína/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Progesterona/antagonistas & inibidores , Progesterona/farmacologia , Receptores Androgênicos/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Adulto JovemRESUMO
The cryopreservation of epididymal sperm can be useful in a variety of circumstances for ensuring genetic preservation of a valued stallion. Although early studies have reported pregnancy rates significantly lower than those achieved with cryopreserved ejaculated sperm, two recent studies report over 60% one-cycle pregnancy rates with epididymal sperm stored for 24 hours at 5 °C before harvest and cryopreservation. The aims of this study were to: (1) attempt to replicate the one-cycle pregnancy rate of over 60% using epididymal sperm cooled and stored within the epididymis for 24 hours before harvest and cryopreservation and (2) evaluate pregnancy outcome with sperm cooled and stored within the epididymis for 48 hours before sperm harvest and cryopreservation. Testicles were obtained from 13 stallions undergoing routine castration. The epididymides were stored at 5 °C for either 24 or 48 hours before sperm harvest and cryopreservation in an egg yolk and dimethylformamide-based freezing extender. Thirteen mares were bred on one cycle with cryopreserved epididymal sperm stored for 24 hours before harvest, and 10 of those 13 mares were also bred on a previous or subsequent cycle with samples from the same stallion that had been stored for 48 hours before harvest. Pregnancy occurred in 7 of the 13 inseminations of sperm stored for 24 hours before harvest, and in 4 of the 10 inseminations of sperm stored for 48 hours before harvest. The pregnancy rate using epididymal sperm stored for 24 hours before harvest is consistent with that of previous reports. In addition, these results provide evidence that pregnancies can be achieved when the epididymides are cooled and stored for 48 hours before sperm harvest and cryopreservation.
Assuntos
Epididimo/fisiologia , Cavalos/fisiologia , Inseminação Artificial/veterinária , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Animais , Criopreservação/veterinária , Feminino , Masculino , Gravidez , Fatores de TempoRESUMO
Masculinized females (sex-reversed females) produce only homogametic spermatozoa (X) for fertilization which is desired for the production of all-female rainbow trout populations. The milt of sex-reversed females is of low quality and must be matured through extension in maturation solutions. The aim of this study was to compare the usefulness of glucose-methanol (GM) extender with artificial seminal plasma (ASP) extender for the maturation of milt of sex-reversed female rainbow trout. Milt suspensions were incubated at 4 °C for either 15 minutes (GM extender) or 120 minutes (ASP extender). Incubation of milt diluted in either the GM or ASP extender caused a significant (P < 0.05) increase in the percentage of sperm motility to 76.1 ± 10.9% and 74.7 ± 18.6% for GM and ASP, respectively, but no differences between both the extenders were found. Incubation also increased the average path velocity, straight line velocity, and linearity values of spermatozoa diluted with the GM extender; at the same time, none of the other parameters changed for ASP suspensions. Sperm diluted with ASP was characterized by higher curvilinear velocity and lateral head displacement values. Percentage of eyed embryos produced by fertilization using milt diluted in the GM extender amounted to 63.6 ± 16.4% and 67.2 ± 11.9% for sperm-to-egg ratio of 300,000:1 or 600,000:1, respectively and was lower (P < 0.05) compared with that of ASP extender (79.5 ± 5.8% and 80.3 ± 4.7% for sperm-to-egg ratio of 300,000:1 or 600,000:1, respectively). The results of our study clearly report that the mechanism of sperm maturation by the GM extender differs from that based on ASP.