Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2308965, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693077

RESUMO

Recent advancements in spin-orbit torque (SOT) technology in two-dimensional van der Waals (2D vdW) materials have not only pushed spintronic devices to their atomic limits but have also unveiled unconventional torques and novel spin-switching mechanisms. The vast diversity of SOT observed in numerous 2D vdW materials necessitates a screening strategy to identify optimal materials for torque device performance. However, such a strategy has yet to be established. To address this critical issue, a combination of density functional theory and non-equilibrium Green's function is employed to calculate the SOT in various 2D vdW bilayer heterostructures. This leads to the discovery of three high SOT systems: WTe2/CrSe2, MoTe2/VS2, and NbSe2/CrSe2. Furthermore, a figure of merit that allows for rapid and efficient estimation of SOT is proposed, enabling high-throughput screening of optimal materials and devices for SOT applications in the future.

2.
Nanotechnology ; 35(36)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861984

RESUMO

Electric field control of spin-orbit torque (SOT) exhibits promising potential in advanced spintronic devices through interfacial modulation. In this work, we investigate the influence of electric field and interfacial oxidation on SOT efficiency in annealed Ta/CoFeB/HfOxheterostructures. By varying annealing temperatures, the damping-like SOT efficiency reaches its peak at the annealing temperature of 320 °C, with an 80% field-free magnetization switching ratio induced by SOT having been demonstrated. This enhancement is ascribed to the annealing-induced modulation of oxygen ion migration at the CoFeB/HfOxinterface. By applying voltages across the Ta/CoFeB/HfOxheterostructures, which drives the O2‒migration across the interface, a reversible, bipolar, and non-volatile modulation of SOT efficiency was observed. The collective influence of annealing temperature and electric field effects on SOT carried out in this work provides an effective approach into facilitating the optimization and control of SOT in spintronic devices.

3.
Nanotechnology ; 35(27)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38579686

RESUMO

Perpendicular magnetic tunnel junction (pMTJ)-based true-random number generators (RNGs) can consume orders of magnitude less energy per bit than CMOS pseudo-RNGs. Here, we numerically investigate with a macrospin Landau-Lifshitz-Gilbert equation solver the use of pMTJs driven by spin-orbit torque to directly sample numbers from arbitrary probability distributions with the help of a tunable probability tree. The tree operates by dynamically biasing sequences of pMTJ relaxation events, called 'coinflips', via an additional applied spin-transfer-torque current. Specifically, using a single, ideal pMTJ device we successfully draw integer samples on the interval [0, 255] from an exponential distribution based onp-value distribution analysis. In order to investigate device-to-device variations, the thermal stability of the pMTJs are varied based on manufactured device data. It is found that while repeatedly using a varied device inhibits ability to recover the probability distribution, the device variations average out when considering the entire set of devices as a 'bucket' to agnostically draw random numbers from. Further, it is noted that the device variations most significantly impact the highest level of the probability tree, with diminishing errors at lower levels. The devices are then used to draw both uniformly and exponentially distributed numbers for the Monte Carlo computation of a problem from particle transport, showing excellent data fit with the analytical solution. Finally, the devices are benchmarked against CMOS and memristor RNGs, showing faster bit generation and significantly lower energy use.

4.
Nano Lett ; 23(15): 6951-6957, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477708

RESUMO

Spin-orbit torque (SOT) is receiving tremendous attention from both fundamental and application-oriented aspects. Co2MnGa, a Weyl ferromagnet that is in a class of topological quantum materials, possesses cubic-based high structural symmetry, the L21 crystal ordering, which should be incapable of hosting anisotropic SOT in conventional understanding. Here we show the discovery of a gigantic anisotropy of self-induced SOT in Co2MnGa. The magnitude of the SOT is comparable to that of heavy metal/ferromagnet bilayer systems, despite the high inversion symmetry of the Co2MnGa structure. More surprisingly, a sign inversion of the self-induced SOT is observed for different crystal axes. This finding stems from the interplay of the topological nature of the electronic states and their strong modulation by external strain. Our research enriches the understanding of the physics of self-induced SOT and demonstrates a versatile method for tuning SOT efficiencies in a wide range of materials for topological and spintronic devices.

5.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37708861

RESUMO

Spin-transfer and spin-orbit torques allow controlling magnetic degrees of freedom in various materials and devices. However, while the transfer of angular momenta between electrons has been widely studied, the contribution of nuclear spins has yet to be explored further. This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins. Our starting point is a sizable nuclear spin in a metal with electronic spin accumulation. Then, via the hyperfine interactions, the nuclear spin modifies the an electronic spin density. The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components, respectively. Thisnuclearspin-orbittorqueis a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.

6.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959664

RESUMO

Thermal fluctuations in two-dimensional (2D) isotropy systems at non-zero finite temperatures can destroy the long-range (LR) magnetic order due to the mechanisms addressed in the Mermin-Wanger theory. However, the magnetic anisotropy related to spin-orbit coupling (SOC) may stabilize magnetic order in 2D systems. Very recently, 2D FexGeTe2 (3 ≤ x ≤ 7) with a high Curie temperature (TC) has not only undergone significant developments in terms of synthetic methods and the control of ferromagnetism (FM), but is also being actively explored for applications in various devices. In this review, we introduce six experimental methods, ten ferromagnetic modulation strategies, and four spintronic devices for 2D FexGeTe2 materials. In summary, we outline the challenges and potential research directions in this field.

7.
Proc Natl Acad Sci U S A ; 116(33): 16186-16191, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31350347

RESUMO

Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3 We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.

8.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451055

RESUMO

Ferrimagnetic thin films formerly played a very important role in the development of information storage technology. Now they are again at the forefront of the rising field of spintronics. From new, more efficient magnetic recording media and sensors based on spin valves to the promising technologies envisaged by all-optical switching, ferrimagnets offer singular properties that deserve to be studies both from the point of view of fundamental physics and for applications. In this review, we will focus on ferrimagnetic thin films based on the combination of rare earths (RE) and transition metals (TM).

9.
Nano Lett ; 20(10): 7036-7042, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32931289

RESUMO

Spin orbit torque driven switching is a favorable way to manipulate nanoscale magnetic objects for both memory and wireless communication devices. The critical current required to switch from one magnetic state to another depends on the geometry and the intrinsic properties of the materials used, which are difficult to control locally. Here, we demonstrate how focused helium ion beam irradiation can modulate the local magnetic anisotropy of a Co thin film at the microscopic scale. Real-time in situ characterization using the anomalous Hall effect showed up to an order of magnitude reduction of the magnetic anisotropy under irradiation, with multilevel switching demonstrated. The result is that spin-switching current densities, down to 800 kA cm-2, can be achieved on predetermined areas of the film, without the need for lithography. The ability to vary critical currents spatially has implications not only for storage elements but also neuromorphic and probabilistic computing.

10.
Sensors (Basel) ; 20(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878139

RESUMO

Spin-based devices can reduce energy leakage and thus increase energy efficiency. They have been seen as an approach to overcoming the constraints of CMOS downscaling, specifically, the Magnetic Tunnel Junction (MTJ) which has been the focus of much research in recent years. Its nonvolatility, scalability and low power consumption are highly attractive when applied in several components. This paper aims at providing a survey of a selection of MTJ applications such as memory and analog to digital converter, among others.

11.
Nano Lett ; 18(2): 1180-1184, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29350935

RESUMO

Magnetic skyrmion, a nanosized spin texture with topological property, has become an area of significant interest due to the scientific insight that it can provide and also its potential impact on applications such as ultra-low-energy and ultra-high-density logic gates. In the quest for the reconfiguration of single logic device and the implementation of the complete logic functions, a novel reconfigurable skyrmion logic (RSL) is proposed and verified by micromagnetic simulations. Logic functions including AND, OR, NOT, NAND, NOR, XOR, and XNOR are implemented in the ferromagnetic (FM) nanotrack by virtue of various effects including spin orbit torque, skyrmion Hall effect, skyrmion-edge repulsions, and skyrmion-skyrmion collision. Different logic functions can be selected in an RSL by applying voltage to specific region(s) of the device, changing the local anisotropy energy of FM film. Material properties and geometrical scaling studies suggest RSL gates fit for energy-efficient computing as well as provide the guidelines for the design and optimization of this new logic family.

12.
Proc Natl Acad Sci U S A ; 112(33): 10310-5, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240358

RESUMO

Spin orbit torque (SOT) provides an efficient way to significantly reduce the current required for switching nanomagnets. However, SOT generated by an in-plane current cannot deterministically switch a perpendicularly polarized magnet due to symmetry reasons. On the other hand, perpendicularly polarized magnets are preferred over in-plane magnets for high-density data storage applications due to their significantly larger thermal stability in ultrascaled dimensions. Here, we show that it is possible to switch a perpendicularly polarized magnet by SOT without needing an external magnetic field. This is accomplished by engineering an anisotropy in the magnets such that the magnetic easy axis slightly tilts away from the direction, normal to the film plane. Such a tilted anisotropy breaks the symmetry of the problem and makes it possible to switch the magnet deterministically. Using a simple Ta/CoFeB/MgO/Ta heterostructure, we demonstrate reversible switching of the magnetization by reversing the polarity of the applied current. This demonstration presents a previously unidentified approach for controlling nanomagnets with SOT.

13.
Nano Lett ; 16(10): 5987-5992, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27327619

RESUMO

We investigate fast-pulse switching of in-plane-magnetized magnetic tunnel junctions (MTJs) within 3-terminal devices in which spin-transfer torque is applied to the MTJ by the giant spin Hall effect. We measure reliable switching, with write error rates down to 10-5, using current pulses as short as just 2 ns in duration. This represents the fastest reliable switching reported to date for any spin-torque-driven magnetic memory geometry and corresponds to a characteristic time scale that is significantly shorter than predicted possible within a macrospin model for in-plane MTJs subject to thermal fluctuations at room temperature. Using micromagnetic simulations, we show that in the three-terminal spin-Hall devices the Oersted magnetic field generated by the pulse current strongly modifies the magnetic dynamics excited by the spin-Hall torque, enabling this unanticipated performance improvement. Our results suggest that in-plane MTJs controlled by Oersted-field-assisted spin-Hall torque are a promising candidate for both cache memory applications requiring high speed and for cryogenic memories requiring low write energies.

14.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38467073

RESUMO

Achieving all electrical control of magnetism without assistance of an external magnetic field has been highly pursued for spintronic applications. In recent years, the manipulation of magnetic states through spin-orbit torque (SOT) has emerged as a promising avenue for realizing energy-efficient spintronic memory and logic devices. Here, we provide a review of the rapidly evolving research frontiers in all electrical control of magnetization by SOT. The first part introduces the SOT mechanisms and SOT devices with different configurations. In the second part, the developments in all electrical SOT control of magnetization enabled by spin current engineering are introduced, which include the approaches of lateral symmetry breaking, crystalline structure engineering of spin source material, antiferromagnetic order and interface-generated spin current. The third part introduces all electrical SOT switching enabled by magnetization engineering of the ferromagnet, such as the interface/interlayer exchange coupling and tuning of anisotropy or magnetization. At last, we provide a summary and future perspectives for all electrical control of magnetization by SOT.

15.
Adv Sci (Weinh) ; 11(23): e2402182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622896

RESUMO

The incorporation of randomness into stochastic computing can provide ample opportunities for applications such as simulated annealing, non-polynomial hard problem solving, and Bayesian neuron networks. In these cases, a considerable number of random numbers with an accurate and configurable probability distribution function (PDF) are indispensable. Preferably, these random numbers are provided at the hardware level to improve speed, efficiency, and parallelism. In this paper, how spin-orbit torque magnetic tunnel junctions (SOT-MTJs) with high barriers are suitable candidates for the desired true random number generators is demonstrated. Not only do these SOT-MTJs perform excellently in speed and endurance, but their randomness can also be conveniently and precisely controlled by a writing voltage, which makes them a well-performed Bernoulli bit. By utilizing these SOT-MTJ-based Bernoulli bits, any PDF, including Gaussian, uniform, exponential, Chi-square, and even arbitrarily defined distributions can be realized. These PDF-configurable true random number generators can then promise to advance the development of stochastic computing and broaden the applications of the SOT-MTJs.

16.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38727395

RESUMO

The anomalous Hall effect and spin-orbit torque of TbCo-based multilayer films have been methodically studied in recent years. Many properties of the films can be obtained by the anomalous Hall resistance loops of the samples. We report on the effects of a structure composed of two heavy metals as the buffer layers on the anomalous Hall resistance loops of TbCo-based multilayers at different temperatures. The results showed that the coercivity increases dramatically with decreasing temperature, and the samples without perpendicular magnetic anisotropy at room temperature showed perpendicular magnetic anisotropy at low temperatures. We quantified the spin-orbit torque efficiency and Dzyaloshinskii-Moriya interaction effective field size of the films W/Pt/TbCo/Pt at room temperature by measuring the loop shift of anomalous Hall resistance. The results showed that the study of anomalous Hall resistance loops plays an important role in the study of spintronics, which can not only show the basic properties of the sample, but can also obtain other information about the sample through the shift of the loops.

17.
Adv Mater ; 36(9): e2308555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016700

RESUMO

2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.

18.
Adv Mater ; 36(24): e2311591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38426690

RESUMO

2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.

19.
Adv Mater ; : e2313059, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871341

RESUMO

Artificial moiré superlattices created by stacking 2D crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices are reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, the effective manipulation of spin-orbit torque (SOT) is demonstrated using moiré superlattices in ferromagnetic devices comprised of twisted WS2/WS2 homobilayer (t-WS2) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, a substantial enhancement of up to 44.5% is observed in SOT conductivity at θ ≈ 8.3°. Furthermore, compared to the WS2 monolayer and untwisted WS2/WS2 bilayers, the moiré superlattices in t-WS2 enable a greater gate-voltage tunability of SOT conductivity. These results are related to the generation of the interfacial moiré magnetic field by the real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through the magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices.

20.
ACS Appl Mater Interfaces ; 16(21): 27917-27925, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38744687

RESUMO

Three-dimensional (3D) vector magnetic sensors play a significant role in a variety of industries, especially in the automotive industry, which enables the control of precise position, angle, and rotation of motion elements. Traditional 3D magnetic sensors integrate multiple sensors with their sensing orientations along the three coordinate axes, leading to a large size and inevitable nonorthogonal misalignment. Here, we demonstrate a wide linearity range 3D magnetic sensor utilizing a single L10-FePt Hall-bar device, whose sensitivity is 291 VA-1 T-1 in the z-axis and 27 VA-1 T-1 in the in-plane axis. Based on the spin-orbit torque-dominated magnetization reversal, the linear response of anomalous Hall resistance within a large linear range (±200 Oe) for the x, y, and z components of magnetic fields has been obtained, respectively. Typically, it exhibits a relatively lower magnetic noise level of 7.9 nV at 1 Hz than previous results, improving measurement resolution at the low frequency. Furthermore, we provide a straightforward approach for noncontact angular position detection based on a single Hall-bar device, which shows great potential for application in rotational motion control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA