Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(4): 2381-2386, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29517243

RESUMO

The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X+) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

2.
Micromachines (Basel) ; 12(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072992

RESUMO

Spin-photonic devices, represented by spin-polarized light emitting diodes and spin-polarized photodiodes, have great potential for practical use in circularly polarized light (CPL) applications. Focusing on the lateral-type spin-photonic devices that can exchange CPL through their side facets, this review describes their functions in practical CPL applications in terms of: (1) Compactness and integrability, (2) stand-alone (monolithic) nature, (3) room temperature operation, (4) emission with high circular polarization, (5) polarization controllability, and (6) CPL detection. Furthermore, it introduces proposed CPL applications in a wide variety of fields and describes the application of these devices in biological diagnosis using CPL scattering. Finally, it discusses the current state of spin-photonic devices and their applications and future prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA