Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.503
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2316175121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408247

RESUMO

The microtubule-associated protein tau aggregates into amyloid fibrils in Alzheimer's disease and other neurodegenerative diseases. In these tauopathies, tau is hyperphosphorylated, suggesting that this posttranslational modification (PTM) may induce tau aggregation. Tau is also phosphorylated in normal developing brains. To investigate how tau phosphorylation induces amyloid fibrils, here we report the atomic structures of two phosphomimetic full-length tau fibrils assembled without anionic cofactors. We mutated key Ser and Thr residues to Glu in two regions of the protein. One construct contains three Glu mutations at the epitope of the anti-phospho-tau antibody AT8 (AT8-3E tau), whereas the other construct contains four Glu mutations at the epitope of the antibody PHF1 (PHF1-4E tau). Solid-state NMR data show that both phosphomimetic tau mutants form homogeneous fibrils with a single set of chemical shifts. The AT8-3E tau rigid core extends from the R3 repeat to the C terminus, whereas the PHF1-4E tau rigid core spans R2, R3, and R4 repeats. Cryoelectron microscopy data show that AT8-3E tau forms a triangular multi-layered core, whereas PHF1-4E tau forms a triple-stranded core. Interestingly, a construct combining all seven Glu mutations exhibits the same conformation as PHF1-4E tau. Scalar-coupled NMR data additionally reveal the dynamics and shape of the fuzzy coat surrounding the rigid cores. These results demonstrate that specific PTMs induce structurally specific tau aggregates, and the phosphorylation code of tau contains redundancy.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Microscopia Crioeletrônica , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Anticorpos/genética , Epitopos , Processamento de Proteína Pós-Traducional , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Proteínas do Grupo Polycomb/genética
2.
Immunol Rev ; 306(1): 293-303, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837251

RESUMO

Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.


Assuntos
Imunidade Inata , Neutrófilos , Animais , Humanos , Microscopia Intravital/métodos , Macrófagos , Mamíferos , Monócitos
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969859

RESUMO

Several publications describing high-resolution structures of amyloid-ß (Aß) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments-namely, 1H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13C,15N-enriched, and fully protonated samples of M0Aß1-42 fibrils by high-field 1H-detected NMR at 23.4 T and 18.8 T, and 13C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M0Aß1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1H detection. These results suggest that 1H detection and DNP may be the spectroscopic approaches of choice for future studies of Aß and other amyloid systems.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Conformação Proteica , Temperatura
4.
Nano Lett ; 24(4): 1385-1391, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230986

RESUMO

Particulate matter pollution has become a serious public health issue, especially with the outbreak of new infectious diseases. However, most existing air filtration materials face challenges such as being too bulky, having high resistance, and a trade-off between filtration efficiency and air permeability. Here, a unique electro-blown spinning technique is used to prepare an air filter made of biomimetic nanoscaled tendril nonwovens (Nano-TN). The introduction of an airflow field significantly increases the whipping frequency and the strain mismatch of composite jets, achieving large-scale and highly efficient preparation of Nano-TN. The resultant Nano-TN has an ultrahigh porosity (97%) and a small pore size (2.9 µm). At the same filtration level, its air resistance is 37% lower than that of traditional straight nanofibrous nonwovens and has a higher dust-holding capacity. Moreover, compared with traditional three-dimensional air filters, the Nano-TN filter is thinner, offering tremendous application prospects in various environmental purification and personal protection fields.


Assuntos
Filtros de Ar , Biomimética , Filtração/métodos , Material Particulado
5.
Nano Lett ; 24(33): 10131-10138, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39078056

RESUMO

Fibrous supercapacitors (SCs) are emerging promising power sources for flexible/wearable electronics and have attracted an extensive amount of attention from researchers. However, the low energy density has always hindered their further development. Here, a coaxial fibrous SC (CFSC) was fabricated by one-step wet-spinning combined with an electrodeposition strategy. Benefiting from the large surface area and abundant pore structure of carbon-modified nitrogen-doped MXene nanosheets (NS), as well as the high conductivity of silver (Ag) NS, the electrolyte ion/electron transport paths are significantly improved. Furthermore, the distributed GO in the P(VDF-HFP) separator could form a high-speed continuous ion transport channel, thus enhancing the ionic conductivity. At a power density of 40-200 µW cm-2, the CFSC shows a high energy density of 0.7-3.39 µWh cm-2. The as-prepared CFSC also maintains an excellent capacitance retention rate of 90.3% even after 15 000 charge-discharge cycles. This work provides a general strategy for manufacturing high-performance, flexible, and wearable SCs.

6.
J Biomol NMR ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904893

RESUMO

Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SaETF), tryptophan synthases from Salmonella typhimurium (StTS) and their dimeric ß-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.

7.
Chemistry ; 30(44): e202400177, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38644348

RESUMO

We report an idea for the synthesis of oligopeptides using a solvent-free ball milling approach. Our concept is inspired by block play, in which it is possible to construct different objects using segments (blocks) of different sizes and lengths. We prove that by having a library of short peptides and employing the ball mill mechanosynthesis (BMMS) method, peptides can be easily coupled to form different oligopeptides with the desired functional and biological properties. Optimizing the BMMS process we found that the best yields we obtained when TBTU and cesium carbonate were used as reagents. The role of Cs2CO3 in the coupling mechanism was followed on each stage of synthesis by 1H, 13C and 133Cs NMR employing Magic Angle Spinning (MAS) techniques. It was found that cesium carbonate acts not only as a base but is also responsible for the activation of substrates and intermediates. The unique information about the BMMS mechanism is based on the analysis of 2D NMR data. The power of BMMS is proved by the example of different peptide combinations, 2+2, 3+2, 4+2, 5+2 and 4+4. The tetra-, penta-, hexa-, hepta- and octapeptides obtained under this project were fully characterized by MS and NMR techniques.


Assuntos
Carbonatos , Césio , Oligopeptídeos , Césio/química , Carbonatos/química , Oligopeptídeos/química , Espectroscopia de Ressonância Magnética , Solventes/química
8.
Chemphyschem ; : e202400537, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129653

RESUMO

Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle Spinning (MAS) frequencies of 100 kHz and more are reviewed. The development of MAS rotors with decreasing outer diameters, combined with the development of superconducting magnets operating at high static magnetic-field strengths up to 28.2 T (1200 MHz proton Larmor frequency) improves resolution and sensitivity in proton-detected solid-state NMR, which is the fundamental requirement for shedding light on noncovalent interactions in solids. The examples reported in this article range from protein-nucleic acid binding in large ATP-fueled motor proteins to a hydrogen-π interaction in a calixarene-lanthanide complex.

9.
J Exp Biol ; 227(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149677

RESUMO

Cetaceans are capable of extraordinary locomotor behaviors in both water and air. Whales and dolphins can execute aerial leaps by swimming rapidly to the water surface to achieve an escape velocity. Previous research on spinner dolphins demonstrated the capability of leaping and completing multiple spins around their longitudinal axis with high angular velocities. This prior research suggested the slender body morphology of spinner dolphins together with the shapes and positions of their appendages allowed for rapid spins in the air. To test whether greater moments of inertia reduced spinning performance, videos and biologging data of cetaceans above and below the water surface were obtained. The principal factors affecting the number of aerial spins a cetacean can execute were moment of inertia and use of control surfaces for subsurface corkscrewing. For spinner dolphin, Pacific striped dolphin, bottlenose dolphin, minke whale and humpback whale, each with swim speeds of 6-7 m s-1, our model predicted that the number of aerial spins executable was 7, 2, 2, 0.76 and 1, respectively, which was consistent with observations. These data implied that the rate of subsurface corkscrewing was limited to 14.0, 6.8, 6.2, 2.2 and 0.75 rad s-1 for spinner dolphins, striped dolphins, bottlenose dolphins, minke whales and humpback whales, respectively. In our study, the moment of inertia of the cetaceans spanned a 21,000-fold range. The greater moments of inertia for the last four species produced large torques on control surfaces that limited subsurface corkscrewing motion and aerial maneuvers compared with spinner dolphins.


Assuntos
Golfinho Nariz-de-Garrafa , Jubarte , Stenella , Animais , Natação , Água
10.
Nanotechnology ; 35(42)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39025082

RESUMO

Flexible, wearable triboelectric nanogenerators (TENGs) monitoring human movement and health signals have received more attention recently. In particular, developing a flexible TENG combining stress, strain, electrical output performance and durability becomes the current research focus. Herein, a highly stretchable, self-powered coaxial yarn TENGs were manufactured using a low-cost, efficient continuous wet-spinning method. Carbon nanotube/conductive thermoplastic polyurethane (MWCNT/CTPU) and polyvinylidene fluoride-hexafluoropropylene were utilized for the coaxial fibers conductive layers and dielectric layers, respectively. Fibers were continuously collected over a length of 10 m. Excellent electrical output with an open-circuit voltage (Voc) of 11.4 V, short-circuit current (Isc) of 114.8 nA, and short-circuit transfer charge (Qsc) of 6.1 nC was achieved. In addition, fabric TENGs with different two and three dimensional structures were further prepared by the developed coaxial fibers. The corresponding electrical output properties and practical performance were discussed. Results showed that the four-layer three-dimensional angle interlocking structure exhibited the optimal performance with an open-circuit voltage (Voc) of 38.4 V, short-circuit current (Isc) of 451.5 nA, and short-circuit transfer charge (Qsc) of 23.1 nC.

11.
Macromol Rapid Commun ; 45(6): e2300619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232954

RESUMO

Piezoelectric nanogenerator (PENG) produces stable electrical signals in response to external mechanical stimuli and holds promise in the fields of flexible sensors and smart wearable devices. In practice, a high-performance PENG with a straightforward structure and exceptional reliability is deeply desired. This study optimally synthesizes piezoelectric composites comprising polyvinylidene fluoride (PVDF) incorporated with barium titanate (BTO) nanoparticles (NPs) and fabricated a PENG with heightened sensitivity by using the electrospinning technique. The polar ß-phase content of the dual-optimized BTO-PVDF (barium titanate and polyvinylidene fluoride) electrospun fiber reaches up to 82.39%. In the bending mode, it achieves a remarkable maximum open-circuit voltage of 19.152 V, a transferred charge of 8.058 nC, and an output voltage per unit area of 2.128 V cm- 2. Under vertical pressure conditions, the BP-PENG exhibits an impressive voltage of 12.361 V while the force is 2.156 N, demonstrating a notable pressure sensing sensitivity of 5.159 V kPa-1, with an excellent linear relationship. Furthermore, the BP-PENG displays sensitive sensing features in monitoring hand movements. The sensitive response and high performance make it promising for applications in human motion monitoring and smart wearable devices.


Assuntos
Polímeros de Fluorcarboneto , Nanofibras , Polivinil , Humanos , Bário , Reprodutibilidade dos Testes , Eletricidade
12.
Macromol Rapid Commun ; 45(15): e2400124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602184

RESUMO

Gel-spinning of ultra-high molecular weight polyethylene (UHMWPE) fibers has attracted great interest in academia and industry since its birth and commercialization in the 1980s, due to unique properties such as high modulus, low density, and excellent chemical resistance. However, the high viscosity and long relaxation time greatly complicate processing. In industry, solvents, like decalin and paraffin oil, usually disentangle the physical networks and promote final drawability. From extruding the polymer solution to post-solid-stretching, many polymer physics problems that accompany high-modulus fiber gel-spinning should be understood and addressed. In this review, by detailed discussions about the effect of entanglements and intracrystalline chain dynamics on the mechanical properties of UHMWPE, theoretical descriptions of the structure formation of disentangled UHMWPE crystals, and the origin of high modulus and strength of final fibers are provided. Several physical intrinsic key factors are also discussed, revealing why UHMWPE is an ideal material for producing high-performance fibers.


Assuntos
Polietilenos , Polietilenos/química , Géis/química , Polímeros/química , Viscosidade
13.
Solid State Nucl Magn Reson ; 130: 101922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417233

RESUMO

Deuterium rotating frame solid-state NMR relaxation measurements (2H R1ρ) are important tools in quantitative studies of molecular dynamics. We demonstrate how 2H to 13C cross-polarization (CP) approaches under 10-40 kHz magic angle spinning rates can be combined with the 2H R1ρ blocks to allow for extension of deuterium rotating frame relaxation studies to methyl groups in biomolecules. This extension permits detection on the 13C nuclei and, hence, for the achievement of site-specific resolution. The measurements are demonstrated using a nine-residue low complexity peptide with the sequence GGKGMGFGL, in which a single selective -13CD3 label is placed at the methionine residue. Carbon-detected measurements are compared with the deuterium direct-detection results, which allows for fine-tuning of experimental approaches. In particular, we show how the adiabatic respiration CP scheme and the double adiabatic sweep on the 2H and 13C channels can be combined with the 2H R1ρ relaxation rates measurement. Off-resonance 2H R1ρ measurements are investigated in addition to the on-resonance condition, as they extent the range of effective spin-locking field.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Deutério , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Simulação de Dinâmica Molecular
14.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903652

RESUMO

The current high mortality of human lung cancer stems largely from the lack of feasible, early disease detection tools. An effective test with serum metabolomics predictive models able to suggest patients harboring disease could expedite triage patient to specialized imaging assessment. Here, using a training-validation-testing-cohort design, we establish our high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS)-based metabolomics predictive models to indicate lung cancer presence and patient survival using serum samples collected prior to their disease diagnoses. Studied serum samples were collected from 79 patients before (within 5.0 y) and at lung cancer diagnosis. Disease predictive models were established by comparing serum metabolomic patterns between our training cohorts: patients with lung cancer at time of diagnosis, and matched healthy controls. These predictive models were then applied to evaluate serum samples of our validation and testing cohorts, all collected from patients before their lung cancer diagnosis. Our study found that the predictive model yielded values for prior-to-detection serum samples to be intermediate between values for patients at time of diagnosis and for healthy controls; these intermediate values significantly differed from both groups, with an F1 score = 0.628 for cancer prediction. Furthermore, values from metabolomics predictive model measured from prior-to-diagnosis sera could significantly predict 5-y survival for patients with localized disease.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Espectroscopia de Ressonância Magnética , Metabolômica , Idoso , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/metabolismo , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
15.
J Mater Sci Mater Med ; 35(1): 21, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526656

RESUMO

The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8+ T cells and NKp46+ NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.


Assuntos
Nanofibras , Neoplasias da Bexiga Urinária , Humanos , Gencitabina , Cisplatino , Linfócitos T CD8-Positivos , Desoxicitidina/uso terapêutico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico
16.
Mikrochim Acta ; 191(6): 362, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822867

RESUMO

Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.


Assuntos
Dopamina , Grafite , Microeletrodos , Poliestirenos , Células PC12 , Dopamina/sangue , Humanos , Ratos , Animais , Poliestirenos/química , Grafite/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Tiofenos/química , Dispositivos Lab-On-A-Chip , Polímeros
17.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931809

RESUMO

Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their use in harsh environments. In this paper, a novel method is proposed to fabricate flexible conductive films via centrifugal spinning to generate thermoplastic polyurethane (TPU) nanofiber substrates by employing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as conductive fillers. These fillers are anchored to the nanofibers through ultrasonic dispersion and impregnation techniques and subsequently modified with polydimethylsiloxane (PDMS). This study focuses on the effect of different ratios of CNTs to CNFs on the film properties. Research demonstrated that at a 1:1 ratio of CNTs to CNFs, with TPU at a 20% concentration and PDMS solution at 2 wt%, the conductive films crafted from these blended fillers exhibited outstanding performance, characterized by electrical conductivity (31.4 S/m), elongation at break (217.5%), and tensile cycling stability (800 cycles at 20% strain). Furthermore, the nanofiber-based conductive films were tested by attaching them to various human body parts. The tests demonstrated that these films effectively respond to motion changes at the wrist, elbow joints, and chest cavity, underscoring their potential as core components in strain sensors.

18.
Sensors (Basel) ; 24(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257436

RESUMO

Laser scanning 3D imaging technology, because it can obtain accurate three-dimensional surface data, has been widely used in the search for wrecks and rescue operations, underwater resource development, and other fields. At present, the conventional underwater spinning laser scanning imaging system maintains a relatively fixed light window. However, in low-light situations underwater, the rotation of the scanning device causes some degree of water fluctuation, which warps the light strip data that the system sensor receives about the object's surface. To solve this problem, this research studies an underwater 3D scanning and imaging system that makes use of a fixed light window and a spinning laser (FWLS). A refraction error compensation algorithm is investigated that is based on the fundamentals of linear laser scanning imaging, and a dynamic refraction mathematical model is established based on the motion of the imaging device. The results of the experiment on error analysis in an optimal underwater environment indicate that the error in reconstructing the radius is decreased by 60% (from 2.5 mm to around 1 mm) when compensating for the measurement data of a standard sphere with a radius of 20 mm. Moreover, the compensated point cloud data exhibit a higher degree of correspondence with the model of the standard spherical point cloud. Furthermore, we examine the impact of physical noise, measurement distance, and partial occlusion of the object on the imaging system inside an authentic underwater setting. This study is a good starting point for looking at the refractive error of an underwater laser scanning imaging system. It also provides to us some ideas for future research on the refractive error of other scanning imaging methods.

19.
Nano Lett ; 23(18): 8436-8444, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37690057

RESUMO

Visual interaction is a promising strategy for the externalized expression and transmission of information, having wide application prospects in wearable luminous textiles. Achieving an autonomous luminous display and dynamic light response to environmental stimuli is attractive but attracts little attention. Herein, we propose a liquid responsive structure based on alternating-current electroluminescent fibers and demonstrate conductive-liquid-bridging electroluminescent fabrics with high integration and personalized patterns. Impressively, our electroluminescent fibers and textiles could afford a sensitive response and high robustness to water, glycerol, ethanol, and sodium chloride solution. The final electroluminescent textiles show an excellent luminescence performance of 149.08 cd m-2. On the proof of concept, a rain-sensing umbrella, luminous sportswear, and liquid response glove are fabricated to demonstrate water detection, visual interaction, and environmental warning. The textile-type visualizing-responding strategy proposed in this work may open up new avenues for the application of ACEL devices in the field of visual interaction.

20.
Nano Lett ; 23(14): 6458-6464, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37442114

RESUMO

The conductivity and strength of carbon nanotube (CNT) wires currently rival those of existing engineering materials; fullerene-based materials have not progressed similarly, despite their exciting transport properties such as superconductivity. This communication reveals a new mechanically robust wire of mutually aligned fullerene supramolecules self-assembled between CNT bundles, where the fullerene supramolecular internal crystal structure and outer surface are aligned and dispersed with the CNT bundles. The crystallinity, crystal dimensions, and other structural features of the fullerene supramolecular network are impacted by a number of important production processes such as fullerene concentration and postprocess annealing. The crystal spacing of the CNTs and fullerenes is not altered, suggesting that they are not exerting significant internal pressure on each other. In low concentrations, the addition of networked fullerenes makes the CNT wire mechanically stronger. More importantly, novel mutually aligned and networked fullerene supramolecules are now in a bulk self-supporting architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA