Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116605, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936052

RESUMO

Our environment is increasingly polluted with various molecules, some of which are considered endocrine disruptors. Metals and phthalates, originating from industrial activities, agricultural practices, or consumer products, are prominent examples of such pollutants. We experimentally investigated the impacts of the heavy metal cadmium and the phthalate DEHP on the moth Spodoptera littoralis. More specifically, larvae were reared in laboratory conditions, where they were exposed to diets contaminated with either two doses of cadmium at concentrations of 62.5 µg/g or 125 µg/g, two doses of DEHP at 100 ng/g and 10 µg/g, or a combination of both low and high doses of the two compounds, with a control group for comparison. Our findings indicate that cadmium delays the developmental transition from larva to adult. Notably, the combination of cadmium and DEHP exacerbated this delay, highlighting a synergistic effect. In contrast, DEHP alone did not affect larval development. Additionally, we observed that cadmium exposure, both alone and in combination with DEHP, led to a lower mass at all larval stages. However, cadmium-exposed individuals that reached adulthood eventually reached a similar mass to those in other groups. Interestingly, while our results did not show any effect of the treatments on hatching success, there was a higher adult mortality rate in the cadmium-treated groups. This suggests that while moths may prioritize reproductive success, their survival at the adult stage is compromised by cadmium exposure. In conclusion, our study demonstrates the impact of cadmium on the development, mass, and adult survival of moths, and reveals synergistic effects when combined with DEHP. These results confirm cadmium as an endocrine disruptor, even at low doses. These insights underscore the importance of understanding the toxicological effects of low doses of pollutants like cadmium and DEHP, both individually and in combination.


Assuntos
Cádmio , Larva , Reprodução , Spodoptera , Animais , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Cádmio/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Feminino
2.
Chem Biodivers ; : e202402098, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316748

RESUMO

The exponential rise in pesticide resistance to conventional chemical pesticides is another major factor driving the development of novel insecticidal active agents. One approach to solving this problem is to investigate novel classes and environmentally safe insecticidal chemicals with a variety of modes of action. Among these techniques is the creation of novel tebufenozide derivatives. Tebufenozide belongs to the insect growth regulator class of insecticides and is regarded as one of the safest chemical insecticides ever. The toxicological and biochemical efficiency of each analog was assessed against the Spodoptera littoralis pest in both its second and fourth instar larvae. The bioassay results show that compound 7 was the most effective insecticidal agent, with LC50 values of 10.6.5 and 18.7 mg/L against S. littoralis larvae in their second and fourth instar larvae, respectively. Finally, it was shown how treatment with the LC50 of the examined substances affected the activity of many enzymes involved in the cuticle production of S. littoralis larvae in their fourth instar. From this study, it was concluded that Acyl hydrazide are helpful for the management of S. littoralis and will be an effective replacement for other synthetic insecticides.

3.
Chem Biodivers ; : e202400831, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005105

RESUMO

5-(Cyanomethyl)-3-((5,5-dimethyl-3-oxocyclohex-1-en-1-yl)amino)-1H-pyrazole-4-carbonitrile (3) is used as a key for the synthesis of arylidenes 5a-fvia its reaction with some aldehydes 4a-f. 5-[(5,5-Dimethyl-3-oxocyclohex-1-en-1-yl)amino]-3-(2-imino-2H-chromen-3-yl)-1H-pyrazole-4-carbonitrile (7) was synthesized via the reaction of compound (3) with 2-hydroxybenzaldehyde in EtOH/piperidine. The target compounds were tested against cotton leafworm larvae in their second and fourth instar. The available data demonstrated that the LC50 values for commercial phenylpyrazole were 3.37 mg/L and 4.55 mg/L for the most affected synthesized compound, 5b. The chemical structure of compound 5b has two cyano moieties, a pyrazole ring and a chlorophenyl, which may be increasing it efficiency. Evaluation of the latent effects of the examined synthesized compounds on various biological parameters, including adult longevity, pupal weight, proportion of normal, deformed pupae, adult emergency, fecundity, and egg hatchability, was done in an additional effort to slightly improve insecticidal compounds. Twelve synthesized compounds were subjected to a molecular docking analysis against glutamate-activated chloride channels. Twelve artificial compounds with the PDB ID of 4COF were subjected to a molecular docking study against the gamma-aminobutyric acid receptor (GABA).

4.
Pestic Biochem Physiol ; 194: 105505, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532359

RESUMO

Cotton leafworm, Spodoptera littoralis (Boisduval), is one of the major destructive pests of ornamental, industrial, and vegetable crops. The efficacy of technical emamectin benzoate (EMB) and fipronil (FPR) was assessed against the 4th larval instar using leaf-dip bioassay method. EMB was more efficient than FPR based on 96 h LC50 values of 0.004 and 0.023 µg/ml, respectively. Joint toxic action of the dual exposure in sequence with time interval 24 h and in mix were evaluated at LC10:LC10, LC25:LC25 and LC50:LC50 after 96 h posttreatment, as well. Their impacts on detoxification enzymes, esterases (ESTs); alkaline phosphatase (ALP); and glutathione S-transferase (GST) as well as acetylcholine esterase (AChE) were also determined. The sequential exposure of EMB after FPR (S1) produced antagonism, potentiation, and potentiation effects, respectively while sequential exposure of FPR after EMB (S2) interacted as addition, potentiation, and potentiation respectively. The rest of binary mixtures (Mix) revealed antagonistic effect regardless of concentration. Orthogonal contrast analysis showed that the highest elevations of AChE, α-EST, ß- EST and ALP enzymes were obtained from Mix at LC50:LC50 (181.6%, 288.4, 229.2 and 460.9%, respectively), LC25:LC25 (131.5%, 252.8, 205.60 and 252.0, respectively) and LC10:LC10 (106.6%, 215.6%, 201.8% and 170.0%, respectively). Differently, the greatest elevation of GST activity (157.7%) resulted from S1 at LC50:LC50, while it was significantly lower at LC25:LC25 and LC10:LC10 as well as Mix and S2 at all concentrations than corresponding concentrations of FPR. These findings shed some light on the role of GST in FPR toxicity and clarified the risk of these dual exposures in elevating detoxification enzymes dangerously compared to their individual insecticides. These dual exposures should be carefully handled. Although rotational exposure at low concentrations may enhance performance and mitigate resistance risk, rotational exposure at high concentrations and Mix may indirectly contribute to the evolution of cross-resistance to other insecticides.


Assuntos
Inseticidas , Animais , Inseticidas/toxicidade , Spodoptera , Ivermectina/toxicidade , Larva , Acetilcolinesterase , Gossypium , Glutationa Transferase
5.
BMC Genomics ; 23(1): 353, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525948

RESUMO

BACKGROUND: The cotton leafworm, Spodoptera littoralis, is a highly polyphagous pest of many cultivated plants and crops in Africa and Europe. The genome of this pest will help us to further understand the molecular mechanisms of polyphagy. RESULTS: Herein, the high-quality genome of S. littoralis was obtained by Pacific Bioscience (PacBio) sequencing. The assembled genome size of S. littoralis is 436.55 Mb with a scaffold N50 of 6.09 Mb, consisting of 17,207 annotated protein-coding genes. Phylogenetic analysis shows that S. littoralis and its sibling species S. litura diverged about 5.44 million years ago. Expanded gene families were mainly involved in metabolic detoxification and tolerance to toxic xenobiotics based on GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Comparative genomics analysis showed that gene families involved in detoxification and chemosensation were significantly expanded in S. littoralis, representing genetic characteristics related to polyphagy and an extensive host range. CONCLUSIONS: We assembled and annotated the reference genome of S. littoralis, and revealed that this pest has the genetic features of strong detoxification capacity, consistent with it being a significant risk to a wide range of host crops. These data resources will provide support for risk assessment and early warning monitoring of major polyphagous agricultural pests.


Assuntos
Genoma , Genômica , Animais , Gossypium/genética , Larva/genética , Filogenia , Spodoptera/genética
6.
Plant Mol Biol ; 109(4-5): 611-625, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34468901

RESUMO

KEY MESSAGE: Calmodulin-like-proteins (CML) belong to a family of calcium-sensing proteins that are unique for plants and involved in many different developmental and stress-related reactions. In defense against herbivory, some pathogens and drought, CML37 acts as a positive and CML42 as a negative regulator, respectively. We provide evidence that both CMLs act antagonistically in the regulation of induced defense responses. A double knock-out line, cml37 x cml42, thus shows wild-type phenotypes upon all kind of stresses we used. A transient increase in the cytosolic calcium concentration is one of the first reactions that can be measured in plant cells upon abiotic as well as biotic stress treatments. These calcium signals are sensed by calcium binding proteins such as calmodulin-like proteins (CMLs), which transduce the sensed information into appropriate stress responses by interacting with downstream target proteins. In previous studies, CML37 has been shown to positively regulate the plants' defense against both the insect herbivore Spodoptera littoralis and the response to drought stress. In contrast, CML42 is known to negatively regulate those two stress responses. Here, we provide evidence that these two CMLs act antagonistically in the regulation of induced responses directed against drought and herbivory stress as well as in the defense against the necrotrophic pathogen Alternaria brassicicola. Both CMLs shape the plant reactions by altering the phytohormone signaling. Consequently, the phytohormone-regulated production of defensive compounds like glucosinolates is also antagonistically mediated by both CMLs. The finding that CML37 and CML42 have antagonistic roles in diverse stress-related responses suggests that these calcium sensor proteins represent important tools for the plant to balance and fine-tune the signaling and downstream reactions upon environmental stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
BMC Plant Biol ; 22(1): 409, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987628

RESUMO

BACKGROUND: Plant-herbivorous insects are a severe danger to the world's agricultural production of various crops. Insecticides used indiscriminately resulted in habitat destruction due to their high toxicity, as well as disease resistance. In this respect, the development of a sustainable approach to supreme crop production with the least damage is a crucially prerequisite. As a result, the current study was carried out to understand the potential effect of arbuscular mycorrhizal (AM) fungi along with Beauvaria bassiana silica nanoparticles (Si NPs) as a new approach to increase cotton (Gossypium hirsutum L. Merr.) defense against an insect herbivore, Spodoptera littoralis. AM and non-AM cotton plants were infested with S. littoralis and then sprayed with a biopesticide [B. bassiana Si NPs] or a chemical insecticide (Chlorpyrifos). RESULTS: The gas chromatography-mass spectrometry (GC-MS) analysis of B. bassiana Si NPs fungal extract showed that the major constituents identified were Oleyl alcohol, trifluoroacetate, 11-Dodecen-1-AL and 13-Octadecenal, (Z)-(CAS). Besides, results revealed a highly significant decrease in growth parameters in S. littoralis infested plants, however, with AM fungal inoculation a substantial improvement in growth traits and biochemical parameters such as protein and carbohydrates contents was observed. In addition, stimulation in proline and antioxidant enzymes activity and a decrease in malondialdehyde content were observed after AM inoculation. CONCLUSION: AM fungi mitigate the harmful effects of herbivorous insects by strengthening the cotton plant's health via enhancing both morphological and biochemical traits that can partially or completely replace the application of chemical insecticides.


Assuntos
Inseticidas , Micorrizas , Nanopartículas , Animais , Gossypium/metabolismo , Insetos , Inseticidas/farmacologia , Dióxido de Silício/metabolismo , Dióxido de Silício/farmacologia , Spodoptera
8.
J Exp Bot ; 73(16): 5634-5649, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35554544

RESUMO

Benzoxazinoids are specialized metabolites that are highly abundant in staple crops, such as maize and wheat. Although their biosynthesis has been studied for several decades, the regulatory mechanisms of the benzoxazinoid pathway remain unknown. Here, we report that the wheat transcription factor MYB31 functions as a regulator of benzoxazinoid biosynthesis genes. A transcriptomic analysis of tetraploid wheat (Triticum turgidum) tissue revealed the up-regulation of two TtMYB31 homoeologous genes upon aphid and caterpillar feeding. TaMYB31 gene silencing in the hexaploid wheat Triticum aestivum significantly reduced benzoxazinoid metabolite levels and led to susceptibility to herbivores. Thus, aphid progeny production, caterpillar body weight gain, and spider mite oviposition significantly increased in TaMYB31-silenced plants. A comprehensive transcriptomic analysis of hexaploid wheat revealed that the TaMYB31 gene is co-expressed with the target benzoxazinoid-encoded Bx genes under several biotic and environmental conditions. Therefore, we analyzed the effect of abiotic stresses on benzoxazinoid levels and discovered a strong accumulation of these compounds in the leaves. The results of a dual fluorescence assay indicated that TaMYB31 binds to the Bx1 and Bx4 gene promoters, thereby activating the transcription of genes involved in the benzoxazinoid pathway. Our finding is the first report of the transcriptional regulation mechanism of the benzoxazinoid pathway in wheat.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Benzoxazinas/metabolismo , Vias Biossintéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo , Zea mays/metabolismo
9.
Cell Mol Life Sci ; 78(19-20): 6593-6603, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34448011

RESUMO

The concept of reverse chemical ecology (exploitation of molecular knowledge for chemical ecology) has recently emerged in conservation biology and human health. Here, we extend this concept to crop protection. Targeting odorant receptors from a crop pest insect, the noctuid moth Spodoptera littoralis, we demonstrate that reverse chemical ecology has the potential to accelerate the discovery of novel crop pest insect attractants and repellents. Using machine learning, we first predicted novel natural ligands for two odorant receptors, SlitOR24 and 25. Then, electrophysiological validation proved in silico predictions to be highly sensitive, as 93% and 67% of predicted agonists triggered a response in Drosophila olfactory neurons expressing SlitOR24 and SlitOR25, respectively, despite a lack of specificity. Last, when tested in Y-maze behavioral assays, the most active novel ligands of the receptors were attractive to caterpillars. This work provides a template for rational design of new eco-friendly semiochemicals to manage crop pest populations.


Assuntos
Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Receptores Odorantes/metabolismo , Animais , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Proteínas de Insetos/metabolismo , Repelentes de Insetos/farmacologia , Aprendizado de Máquina , Odorantes , Feromônios/farmacologia , Olfato/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo
10.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887066

RESUMO

Jasmonic acid (JA) is an important hormone that functions in plant defense. cam1 and wrky53 mutants were more resistant to Spodoptera littoralis than in the wild-type (WT) Arabidopsis group. In addition, JA concentration in cam1 and wrky53 mutants was higher compared with the WT group. To explore how these two proteins affect the resistance of Arabidopsis plants, we used a yeast two-hybrid assay, firefly luciferase complementation imaging assay and in vitro pull-down assay confirming that calmodulin 1 (CAM1) interacted with WRKY53. However, these two proteins separate when calcium concentration increases in Arabidopsis leaf cells. Then, electrophoretic mobility shift assay and luciferase activation assay were used to verify that WRKY53 could bind to lipoxygenases 3 (LOX3) and lipoxygenases 4 (LOX4) gene promoters and negatively regulate gene expression. This study reveals that CAM1 and WRKY53 negatively regulate plant resistance to herbivory by regulating the JA biosynthesis pathway via the dissociation of CAM1-WRKY53, then the released WRKY53 binds to the LOXs promoters to negatively regulate LOXs gene expression. This study reveals WRKY53's mechanism in insect resistance, a new light on the function of WRKY53.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo
11.
Appl Environ Microbiol ; 87(13): e0283120, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893115

RESUMO

Rhizobacteria in the genus Pseudomonas can enhance plant resistance to a range of pathogens and herbivores. However, resistance to these different classes of plant antagonists is mediated by different molecular mechanisms, and the extent to which induced systemic resistance by Pseudomonas can simultaneously protect plants against both pathogens and herbivores remains unclear. We screened 12 root-colonizing Pseudomonas strains to assess their ability to induce resistance in Arabidopsis thaliana against a foliar pathogen (Pseudomonas syringae DC3000) and a chewing herbivore (Spodoptera littoralis). None of our 12 strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these (Pseudomonas strain P97-38) also made plants more susceptible to herbivory. Phytohormone analyses revealed stronger salicylic acid induction in plants colonized by P97-38 (versus controls) following subsequent pathogen infection but weaker induction of jasmonic acid (JA)-mediated defenses following herbivory. We found no effects of P97-38 inoculation on herbivore-relevant nutrients such as sugars and protein, suggesting that the observed enhancement of susceptibility to S. littoralis is due to effects on plant defense chemistry rather than nutrition. These findings suggest that Pseudomonas strains that enhance plant resistance to pathogens may have neutral or negative effects on resistance to herbivores and provide insight into potential mechanisms associated with effects on different classes of plant antagonists. Improved understanding of these effects has potentially important implications for the use of rhizobacteria inoculation in agriculture. IMPORTANCE Plant-associated microbes have significant potential to enhance agricultural production, for example, by enhancing plant resistance to pathogens and pests. Efforts to identify beneficial microbial strains typically focus on a narrow range of desirable plant traits; however, microbial symbionts can have complex effects on plant phenotypes, including susceptibility and resistance to different classes of plant antagonists. We examined the effects of 12 strains of Pseudomonas rhizobacteria on plant (Arabidopsis) resistance to a lepidopteran herbivore and a foliar pathogen. None of our strains increased plant resistance against herbivory; however, four strains enhanced pathogen resistance, and one of these made plants more susceptible to herbivory (likely via effects on plant defense chemistry). These findings indicate that microbial strains that enhance plant resistance to pathogens can have neutral or negative effects on resistance to herbivores, highlighting potential pitfalls in the application of beneficial rhizobacteria as biocontrol agents.


Assuntos
Arabidopsis/microbiologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Defesa das Plantas contra Herbivoria , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Spodoptera/fisiologia , Animais , Fluorescência , Doenças das Plantas/microbiologia
12.
J Chem Ecol ; 47(2): 227-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33459999

RESUMO

The complex interaction between a higher organism and its resident gut flora is a subject of immense interest in the field of symbiosis. Many insects harbor a complex community of microorganisms in their gut. Larvae of Spodoptera littoralis, a lepidopteran pest, house a bacterial community that varies both spatially (along the length of the gut) and temporally (during the insect's life cycle). To monitor the rapid adaptation of microbes to conditions in the gut, a GFP-tagged reporter strain of E. mundtii, a major player in the gut community, was constructed. After early-instar S. littoralis larvae were fed with the tagged microbes, these were recovered from the larval fore- and hindgut by flow cytometry. The fluorescent reporter confirmed the persistence of E. mundtii in the gut. RNA-sequencing of the sorted bacteria highlighted various strategies of the symbiont's survival, including upregulated pathways for tolerating alkaline stress, forming biofilms and two-component signaling systems for quorum sensing, and resisting oxidative stress. Although these symbionts depend on the host for amino acid and fatty acids, differential regulation among various metabolic pathways points to an enriched lysine synthesis pathway of E. mundtii in the hindgut of the larvae.


Assuntos
Adaptação Fisiológica , Enterococcus/fisiologia , Spodoptera/microbiologia , Transcriptoma , Animais , Citometria de Fluxo , Trato Gastrointestinal/microbiologia , Concentração de Íons de Hidrogênio , Mucosa Intestinal/microbiologia , Ferro/metabolismo , Larva/microbiologia , Análise de Sequência de RNA
13.
Bull Entomol Res ; : 1-11, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34704547

RESUMO

Spodoptera littoralis (Boisd) is globally recognized as a destructive polyphagous insect pest of various crops in the world. It is commonly managed by chemical pesticides, which can cause deleterious effects such as environmental pollution, toxicity to non-target organisms and the emergence of secondary pests. Hence, investigations into alternative pest control strategies such as the use of resistant host plant cultivar against S. littoralis is important. This study aimed to explore the nutritional performance of S. littoralis larvae in dependence on total anthocyanin, flavonoid, and phenol levels across 11 bean cultivars (Phaseolus and Vigna spp.) under laboratory conditions. The results revealed that the Mashhad cultivar accumulated the highest amount of total phenols (13.59 mg ml-1), whereas Yaghout and Arabi cultivars posed the lowest total phenols contents (1.80 and 1.90 mg ml-1, respectively). Across larval instars (third to sixth), the highest consumption index and relative consumption rate were recorded on the Mashhad cultivar. The lowest values of efficiency of conversion of ingested food and the efficiency of conversion of digested food of total larval instars were detected in the larvae which were reared on the Mashhad cultivar. Likewise, the lowest value of the index of plant quality (IPQ) was obtained in the Mashhad cultivar; however, IPQ was figured out at the highest level in the Arabi cultivar. Our findings show that the differential accumulation of secondary metabolites would change the nutritional quality of plants for S. littoralis. Based on the findings, the Mashhad cultivar may serve as a candidate for either integrated pest management or breeding programs aiming at controlling this pest.

14.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562562

RESUMO

Some plant species are less susceptible to herbivore infestation than others. The reason for this is often unknown in detail but is very likely due to an efficient composition of secondary plant metabolites. Strikingly, carnivorous plants of the genus Nepenthes show extremely less herbivory both in the field and in green house. In order to identify the basis for the efficient defense against herbivorous insects in Nepenthes, we performed bioassays using larvae of the generalist lepidopteran herbivore, Spodoptera littoralis. Larvae fed with different tissues from Nepenthes x ventrata grew significantly less when feeding on a diet containing leaf tissue compared with pitcher-trap tissue. As dominating metabolite in Nepenthes tissues, we identified a naphthoquinone, plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone). When plumbagin was added at different concentrations to the diet of S. littoralis larvae, an EC50 value for larval growth inhibition was determined with 226.5 µg g-1 diet. To further determine the concentration causing higher larval mortality, sweet potato leaf discs were covered with increasing plumbagin concentrations in no-choice-assays; a higher mortality of the larvae was found beyond 60 µg plumbagin per leaf, corresponding to 750 µg g-1. Plant-derived insecticides have long been proposed as alternatives for pest management; plumbagin and derivatives might be such promising environmentally friendly candidates.


Assuntos
Caryophyllales/química , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Naftoquinonas/química , Naftoquinonas/farmacologia , Animais , Folhas de Planta/química
15.
J Integr Plant Biol ; 63(8): 1416-1421, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33930259

RESUMO

The ubiquitous volatile linalool is metabolized in plants to nonvolatile derivatives. We studied Nicotiana attenuata plants which naturally vary in (S)-(+)-linalool contents, and lines engineered to produce either (R)-(-)- or (S)-(+)-linalool. Only (S)-(+)-linalool production was associated with slower growth of a generalist herbivore, and a large fraction was present as nonvolatile derivatives. We found that variation in volatile linalool and its nonvolatile glycosides mapped to the same genetic locus which harbored the biosynthetic gene, NaLIS, but that free linalool varied more in environmental responses. This study reveals how (S)-(+)-linalool and conjugates differ in their regulation and possible functions in resistance.


Assuntos
Monoterpenos Acíclicos/metabolismo , Loci Gênicos , Variação Genética , Metaboloma/genética , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Plantas Geneticamente Modificadas , Nicotiana/efeitos dos fármacos , Nicotiana/genética
16.
Horm Behav ; 125: 104808, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32628962

RESUMO

Bis(2-ethylhexyl) phthalate (DEHP) is a widely produced plasticizer that is considered to act as an endocrine-disrupting chemical in vertebrates and invertebrates. Indeed, many studies have shown that DEHP alters hormonal levels, reproduction and behavior in vertebrates. Few studies have focused on the effects of DEHP on insects, although DEHP is found almost everywhere in their natural habitats, particularly in soils and plants. Here, we investigated the effects of DEHP on the sexual behavior and physiology of a pest insect, the noctuid moth Spodoptera littoralis. In this nocturnal species, olfaction is crucial for sexual behavior, and ecdysteroids at the antennal level have been shown to modulate sex pheromone detection by males. In the present study, larvae were fed food containing different DEHP concentrations, and DEHP concentrations were then measured in the adults (males and females). Hemolymphatic ecdysteroid concentrations, the antennal expression of genes involved in the ecdysteroid pathway (nuclear receptors EcR, USP, E75, and E78 and calmodulin) and sexual behavior were then investigated in adult males. The success and latency of mating as well as the hatching success were also studied in pairs consisting of one DEHP male and one uncontaminated female or one DEHP female and one uncontaminated male. We also studied the offspring produced from pairs involving contaminated females to test the transgenerational effect of DEHP. Our results showed the general downregulation of nuclear receptors and calmodulin gene expression associated with the higher concentrations of DEHP, suggesting peripheral olfactory disruption. We found some effects on male behavior but without an alteration of the mating rate. Effects on offspring mortality and developmental rates in the N + 1 generation were also found at the higher doses of DEHP. Taken together, the results of the study show for the first time that larval exposure to DEHP can induce delayed endocrine-disruptive effects in the adults of a terrestrial insect as well as effects on the next generation. To date, our study is also the first description of an impact of endocrine disrupter on olfaction in insects.


Assuntos
Dietilexilftalato/farmacologia , Ecdisteroides/metabolismo , Disruptores Endócrinos/farmacologia , Reprodução/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Spodoptera , Animais , Feminino , Larva/efeitos dos fármacos , Larva/metabolismo , Masculino , Exposição Materna/efeitos adversos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Reprodução/genética , Comportamento Sexual Animal/fisiologia , Olfato/efeitos dos fármacos , Olfato/genética , Spodoptera/efeitos dos fármacos , Spodoptera/fisiologia
17.
J Chem Ecol ; 46(3): 344-360, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32002720

RESUMO

The vast spectrum of inducible plant defenses can have direct negative effects on herbivores, or indirect effects, for instance in the form of herbivore-induced plant volatiles (HIPVs) that attract natural enemies. Various arthropods have evolved ways to suppress plant defenses. To test whether this is the case for caterpillar-induced HIPVs, we compared the volatile induction by Spodoptera frugiperda (Lepidoptera: Noctuidae), which is particularly well adapted to feed on maize (Zea mays), with the induction by three more generalist noctuid larvae. We tested the hypothesis that S. frugiperda suppresses HIPV emissions in maize, and thereby reduces attractiveness to natural enemies. HIPV emissions triggered by S. frugiperda when feeding on maize were indeed found to be significantly weaker than by Spodoptera littoralis, Spodoptera exigua, and Helicoverpa armigera. The suppression seems specific for maize, as we found no evidence for this when S. frugiperda caterpillars fed on cotton (Gossypium herbaceum). Artificially damaged maize plants treated with larval regurgitant revealed that HIPV suppression may be related to factors in the caterpillars' oral secretions. We also found evidence that differential physical damage that the caterpillars inflict on maize leaves may play a role. The suppressed induction of HIPVs had no apparent consequences for the attraction of a common parasitoid of S. frugiperda, Cotesia marginiventris (Hymenoptera: Braconidae). Nevertheless, the ability to manipulate the defenses of its main host plant may have contributed to the success of S. frugiperda as a major pest of maize, especially in Africa and Asia, which it has recently invaded.


Assuntos
Herbivoria , Mariposas/fisiologia , Folhas de Planta/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Zea mays/metabolismo , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Especificidade da Espécie , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia
18.
BMC Genomics ; 20(1): 428, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138111

RESUMO

BACKGROUND: Deciphering the molecular mechanisms mediating the chemical senses, taste, and smell has been of vital importance for understanding the nature of how insects interact with their chemical environment. Several gene families are implicated in the uptake, recognition, and termination of chemical signaling, including binding proteins, chemosensory receptors and degrading enzymes. The cotton leafworm, Spodoptera littoralis, is a phytophagous pest and current focal species for insect chemical ecology and neuroethology. RESULTS: We produced male and female Illumina-based transcriptomes from chemosensory and non-chemosensory tissues of S. littoralis, including the antennae, proboscis, brain and body carcass. We have annotated 306 gene transcripts from eight gene families with known chemosensory function, including 114 novel candidate genes. Odorant receptors responsive to floral compounds are expressed in the proboscis and may play a role in guiding proboscis probing behavior. In both males and females, expression of gene transcripts with known chemosensory function, including odorant receptors and pheromone-binding proteins, has been observed in brain tissue, suggesting internal, non-sensory function for these genes. CONCLUSIONS: A well-curated set of annotated gene transcripts with putative chemosensory function is provided. This will serve as a resource for future chemosensory and transcriptomic studies in S. littoralis and closely related species. Collectively, our results expand current understanding of the expression patterns of genes with putative chemosensory function in insect sensory and non-sensory tissues. When coupled with functional data, such as the deorphanization of odorant receptors, the gene expression data can facilitate hypothesis generation, serving as a substrate for future studies.


Assuntos
Proteínas de Insetos/genética , Spodoptera/genética , Animais , Antenas de Artrópodes/metabolismo , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/genética , Esterases/metabolismo , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Proteínas de Insetos/metabolismo , Masculino , Família Multigênica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Spodoptera/enzimologia , Spodoptera/metabolismo , Spodoptera/fisiologia , Percepção Gustatória
19.
BMC Plant Biol ; 19(1): 322, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319793

RESUMO

BACKGROUND: Besides fibers, cotton plants also produce a large amount of seeds with a high oil and protein content. The use of these seeds is restricted by their high contents of the terpenoid gossypol, which is harmful to humans and livestock. Using a genetic engineering approach, "Ultra-low gossypol cottonseed" (ULGCS) plants were produced by knocking down an enzyme that catalyzes the formation of a precursor of gossypol. This was accomplished via RNAi-mediated silencing of the target gene using a seed-specific α-globulin promotor. Since gossypol is also a crucial defense mechanism against leaf-feeding herbivores, ULGCS plants might possess lower herbivore resistance than non-engineered plants. Therefore, we tested the constitutive and inducible direct insect resistance of two ULGCS cotton lines against the African cotton leafworm, Spodoptera littoralis. RESULT: The herbivore was equally affected by both ULGCS lines and the control (Coker 312) line when feeding on fully expanded true leaves from undamaged plants and plants induced by jasmonic acid. When plants were induced by caterpillar-damage, however, S. littoralis larvae performed better on the ULGCS plants. Terpenoid analyses revealed that the ULGCS lines were equally inducible as the control plants. Levels of terpenoids were always lower in one of the two lines. In the case of cotyledons, caterpillars performed better on ULGCS cotton than on conventional cotton. This was likely caused by reduced levels of gossypol in ULGCS cotyledons. CONCLUSION: Despite those effects, the insect resistance of ULGSC cotton can be considered as largely intact and the plants may, therefore, be an interesting alternative to conventional cotton varieties.


Assuntos
Gossypium/fisiologia , Gossipol/metabolismo , Animais , Cotilédone/química , Técnicas de Silenciamento de Genes , Gossypium/genética , Gossipol/análise , Herbivoria , Larva , Folhas de Planta/química , Spodoptera
20.
Glob Chang Biol ; 24(2): 631-643, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28731514

RESUMO

Global climatic changes may lead to the arrival of multiple range-expanding species from different trophic levels into new habitats, either simultaneously or in quick succession, potentially causing the introduction of manifold novel interactions into native food webs. Unraveling the complex biotic interactions between native and range-expanding species is critical to understand the impact of climate change on community ecology, but experimental evidence is lacking. In a series of laboratory experiments that simulated direct and indirect species interactions, we investigated the effects of the concurrent arrival of a range-expanding insect herbivore in Europe, Spodoptera littoralis, and its associated parasitoid Microplitis rufiventris, on the native herbivore Mamestra brassicae, and its associated parasitoid Microplitis mediator, when co-occurring on a native plant, Brassica rapa. Overall, direct interactions between the herbivores were beneficial for the exotic herbivore (higher pupal weight than the native herbivore), and negative for the native herbivore (higher mortality than the exotic herbivore). At the third trophic level, both parasitoids were unable to parasitize the herbivore they did not coexist with, but the presence of the exotic parasitoid still negatively affected the native herbivore (increased mortality) and the native parasitoid (decreased parasitism rate), through failed parasitism attempts and interference effects. Our results suggest different interaction scenarios depending on whether S. littoralis and its parasitoid arrive to the native tritrophic system separately or concurrently, as the negative effects associated with the presence of the parasitoid were dependent on the presence of the exotic herbivore. These findings illustrate the complexity and interconnectedness of multitrophic changes resulting from concurrent species arrival to new environments, and the need for integrating the ecological effects of such arrivals into the general theoretical framework of global invasion patterns driven by climatic change.


Assuntos
Herbivoria/fisiologia , Himenópteros/fisiologia , Lepidópteros/parasitologia , Plantas/classificação , Distribuição Animal , Animais , Europa (Continente) , Cadeia Alimentar , Interações Hospedeiro-Parasita , Espécies Introduzidas , Larva , Parasitos , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA