RESUMO
Salmonella enterica serovar Typhimurium is an enteric pathogen associated with foodborne disease. Salmonella invades the intestinal epithelium using a type three secretion system encoded on Salmonella pathogenicity island 1 (SPI-1). SPI-1 genes are tightly regulated by a complex feed-forward loop to ensure proper spatial and temporal expression. Most regulatory input is integrated at HilD, through control of hilD mRNA translation or HilD protein activity. The hilD mRNA possesses a 310-nucleotide 3' untranslated region (UTR) that influences HilD and SPI-1 expression, and this regulation is dependent on Hfq and RNase E, cofactors known to mediate small RNA (sRNA) activities. Thus, we hypothesized that the hilD mRNA 3' UTR is a target for sRNAs. Here, we show that two sRNAs, SdsR and Spot 42, regulate SPI-1 by targeting different regions of the hilD mRNA 3' UTR. Regulatory activities of these sRNAs depended on Hfq and RNase E, in agreement with previous roles found for both at the hilD 3' UTR. Salmonella mutants lacking SdsR and Spot 42 had decreased virulence in a mouse model of infection. Collectively, this work suggests that these sRNAs targeting the hilD mRNA 3' UTR increase hilD mRNA levels by interfering with RNase E-dependent mRNA degradation and that this regulatory effect is required for Salmonella invasiveness. Our work provides novel insights into mechanisms of sRNA regulation at bacterial mRNA 3' UTRs and adds to our knowledge of post-transcriptional regulation of the SPI-1 complex feed-forward loop. IMPORTANCE Salmonella enterica serovar Typhimurium is a prominent foodborne pathogen, infecting millions of people a year. To express virulence genes at the correct time and place in the host, Salmonella uses a complex regulatory network that senses environmental conditions. Known for their role in allowing quick responses to stress and virulence conditions, we investigated the role of small RNAs in facilitating precise expression of virulence genes. We found that the 3' untranslated region of the hilD mRNA, encoding a key virulence regulator, is a target for small RNAs and RNase E. The small RNAs stabilize hilD mRNA to allow proper expression of Salmonella virulence genes in the host.
Assuntos
Pequeno RNA não Traduzido , Fatores de Transcrição , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Fatores de Transcrição/metabolismo , Ilhas Genômicas , Salmonella typhimurium/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Estabilidade de RNA , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismoRESUMO
The carbon storage regulator system and base-pairing small RNAs (sRNAs) represent two predominant modes of bacterial post-transcriptional regulation, which globally influence gene expression. Binding of CsrA protein to the 5' UTR or initial mRNA coding sequences can affect translation, RNA stability, and/or transcript elongation. Base-pairing sRNAs also regulate these processes, often requiring assistance from the RNA chaperone Hfq. Transcriptomics studies in Escherichia coli have identified many new CsrA targets, including Spot 42 and other base-pairing sRNAs. Spot 42 synthesis is repressed by cAMP-CRP, induced by the presence of glucose, and Spot 42 post-transcriptionally represses operons that facilitate metabolism of nonpreferred carbon sources. CsrA activity is also increased by glucose via effects on CsrA sRNA antagonists, CsrB/C. Here, we elucidate a mechanism wherein CsrA binds to and protects Spot 42 sRNA from RNase E-mediated cleavage. This protection leads to enhanced repression of srlA by Spot 42, a gene required for sorbitol uptake. A second, independent mechanism by which CsrA represses srlA is by binding to and inhibiting translation of srlM mRNA, encoding a transcriptional activator of srlA. Our findings demonstrate a novel means of regulation, by CsrA binding to a sRNA, and indicate that such interactions can help to shape complex bacterial regulatory circuitry.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Regiões 5' não Traduzidas/genética , Pareamento de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica , Glucose/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Estabilidade de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genéticaRESUMO
Post-transcriptional regulatory networks in Gammaproteobacteria are to a large extent built around the two globally acting RNA-binding proteins (RBPs) CsrA and Hfq. Both RBPs interact with small regulatory RNAs (sRNAs), but the functional outcomes of these interactions are generally distinct. Whereas Hfq both stabilizes sRNAs and promotes their base-pairing to target mRNAs, the sRNAs bound by CsrA act as sequestering molecules that titrate the RBP away from its mRNA targets. In this issue of Molecular Microbiology, Lai et al. reveal that CsrA interacts with the Hfq-associated and base-pairing sRNA Spot 42. In this case, CsrA increases Spot 42 stability by masking a cleavage site for endoribonuclease RNase E, thereby promoting Spot 42-dependent regulation of srlA mRNA. Interestingly, the effect of CsrA on srlA expression is two-fold. In addition to affecting Spot 42-dependent regulation, CsrA directly inhibits translation of SrlM, an activator of srlA transcription. Together, this study reveals a new function for CsrA and indicates more intricate connections between the CsrA and Hfq networks than previously anticipated. Several recent studies have identified additional RBPs that interact with sRNAs. With new RBP identification methods at hand, it will be intriguing to see how many more sRNA-binding proteins will be uncovered.
Assuntos
Fator Proteico 1 do Hospedeiro , Pequeno RNA não Traduzido , Pareamento de Bases , Fator Proteico 1 do Hospedeiro/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genéticaRESUMO
The Escherichia coli gal operon has the structure Pgal-galE-galT-galK-galM. During early log growth, a gradient in gene expression, named type 2 polarity, is established, as follows: galE > galT > galK > galM. However, during late-log growth, type 1 polarity is established in which galK is greater than galT, as follows: galE > galK > galT > galM. We found that type 2 polarity occurs as a result of the down-regulation of galK, which is caused by two different molecular mechanisms: Spot 42-mediated degradation of the galK-specific mRNA, mK2, and Spot 42-mediated Rho-dependent transcription termination at the end of galT. Because the concentration of Spot 42 drops during the transition period of the polarity type switch, these results demonstrate that type 1 polarity is the result of alleviation of Spot 42-mediated galK down-regulation. Because the Spot 42-binding site overlaps with a putative Rho-binding site, a molecular mechanism is proposed to explain how Spot 42, possibly with Hfq, enhances Rho-mediated transcription termination at the end of galT.
Assuntos
Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Genes Bacterianos , Sequência de Bases , Regulação para Baixo , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Galactose/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Dados de Sequência Molecular , Óperon , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Terminação da Transcrição GenéticaRESUMO
The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding.
Assuntos
Metabolismo dos Carboidratos/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Mensageiro/química , RNA Mensageiro/genética , Pequeno RNA não Traduzido/químicaRESUMO
Small regulatory RNAs (sRNAs) are influential post-transcriptional modulators of gene expression in bacteria. They regulate gene expression by base pairing to target mRNAs, leading to inhibition of translation and/or alteration of mRNA stability. Recently, several sRNAs have been discovered to regulate genes encoded in operons. In some cases, these sRNAs regulate all the genes encoded by the polycistronic mRNA (coordinate regulation) while in other cases, only a select subset of cistrons is controlled by the sRNA (discoordinate regulation). In this point of view, mechanisms of regulation and characteristics of sRNA-mRNA interactions involving polycistronic mRNAs are described. The diversity in mechanisms represented by these few characterized examples suggests that we still have much to learn about sRNA regulation of long polycistronic messages.
Assuntos
Regulação Bacteriana da Expressão Gênica , Óperon , RNA Bacteriano/fisiologia , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/fisiologia , Pareamento de Bases , Genes , Genes Bacterianos , Estabilidade de RNA , RNA Mensageiro/genéticaRESUMO
In bacteria, most small RNA (sRNA) elicits RNase E-mediated target mRNA degradation by binding near the translation initiation site at the 5' end of the target mRNA. Spot 42 is an sRNA that binds in the middle of the gal operon near the translation initiation site of galK, the third gene of four, but it is not clear whether this binding causes degradation of gal mRNA. In this study, we measured the decay rate of gal mRNA using Northern blot and found that Spot 42 binding caused degradation of only a specific group of gal mRNA that shares their 3' end with full-length mRNA. The results showed that in the MG1655Δspf strain in which the Spot 42 gene was removed, the half-life of each gal mRNA in the group increased by about 200% compared to the wild type. Since these mRNA species are intermediate mRNA molecules created by the decay process of the full-length gal mRNA, these results suggest that sRNA accelerates the mRNA decaying processes that normally operate, thus revealing an unprecedented role of sRNA in mRNA biology.
RESUMO
Putrescine, a typical polyamine compound important for cell growth and stress resistance, can be utilized as an energy source. However, the regulation of its catabolism is unclear. Here the small RNA (sRNA) Spot 42, an essential regulator of carbon catabolite repression (CCR), was confirmed to participate in the post-transcriptional regulation of putrescine catabolism in Escherichia coli. Its encoding gene spf exclusively exists in the γ-proteobacteria and contains specific binding sites to the 5'-untranslated regions of the puuE gene, which encodes transaminase in the glutamylated putrescine pathway of putrescine catabolism converting γ-aminobutyrate (GABA) into succinate semialdehyde (SSA). The transcription of the spf gene was induced by glucose, inhibited by putrescine, and unaffected by PuuR, the repressor of puu genes. Excess Spot 42 repressed the expression of PuuE significantly in an antisense mechanism through the direct and specific base-pairing between the 51`-57 nt of Spot 42 and the 5'-UTR of puuE. Interestingly, Spot 42 mainly influenced the stability of the puuCBE transcript. This work revealed the regulatory role of Spot 42 in putrescine catabolism, in the switch between favorable and non-favorable carbon source utilization, and in the balance of metabolism of carbon and nitrogen sources.
Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Putrescina/metabolismo , RNA Bacteriano/metabolismo , Animais , Sítios de Ligação , Escherichia coli/genética , RNA Bacteriano/genética , Transcrição GênicaRESUMO
[This corrects the article DOI: 10.3389/fmicb.2020.570536.].
RESUMO
Post-transcriptional regulation mediated by regulatory small RNAs (sRNAs) has risen as a key player in fine-tuning gene expression in response to environmental stimuli. Here, we show that, in Salmonella enterica, the central metabolic regulator CRP-cAMP differentially regulates the sRNAs CsrB and CsrC in a growth phase-dependent manner. While CsrB expression remains unchanged during growth, CsrC displays a growth phase-dependent expression profile, being weakly expressed at the logarithmic growth phase and induced upon entry into stationary phase. We show that CRP-cAMP contributes to the expression pattern of CsrC by repressing its expression during the logarithmic growth phase. The CRP-cAMP mediated repression of CsrC is independent of SirA, a known transcriptional CsrB/CsrC activator. We further show that the sRNA Spot 42, which is derepressed in a Δcrp strain, upregulates CsrC during logarithmic growth. We propose a model where the growth-dependent regulation of CsrC is sustained by the CRP-cAMP-mediated repression of Spot 42. Together, our data point toward a differential regulation of the sRNAs CsrB and CsrC in response to environmental stimuli, leading to fine-tuning of gene expression via the sequestration of the RNA-binding protein CsrA.
RESUMO
The locus of enterocyte effacement is necessary for enteropathogenic Escherichia coli (EPEC) to form attaching and effacing (A/E) lesions. A/E lesions are characterized by intimate bacterial adherence to intestinal cells and destruction of microvilli, which leads to diarrhea. Therefore, studies interrogating the regulation of the locus of enterocyte effacement (LEE) are critical for understanding the molecular epidemiology of EPEC infections and developing interventional strategies. Hitherto, most studies have centered on protein-based regulators, whereas the role of small regulatory RNAs remains underappreciated. Previously, we identified the first sRNAs-MgrR, RyhB, and McaS-that regulate the LEE of EPEC. This study was undertaken to identify additional sRNAs that impact the LEE. Our results suggest that the catabolite-responsive sRNA, Spot42, indirectly controls the LEE by inhibiting synthesis of its inducer, indole. Spot42 base-pairs with the tnaCAB mRNA and presumably destabilizes the transcript, thereby preventing expression of the regulatory and structural proteins that are involved in the import and hydrolysis of tryptophan into indole. The absence of intracellular indole leads to reduced transcription of the LEE1-encoded master transcriptional activator Ler, thereby maintaining the LEE in its silenced state and delaying A/E lesion morphogenesis. Our results highlight the importance of riboregulators that synchronize metabolic and virulence pathways in bacterial infection.
RESUMO
The cytotoxicity of Vibrio parahaemolyticus has been related to the type III secretion system 1 effector protein VP1680, which is secreted and translocated into host cells with the help of the specific chaperone protein, VP1682. This study sought to confirm the in silico analysis, which predicted that a small regulatory RNA (Spot 42) could base pair with the region encompassing the ribosomal-binding site and initiation codon of the vp1682 mRNA. Electrophoresis mobility shift assays indicated that Spot 42 could bind to the vp1682 mRNA with the help of Hfq. Consistent with these results, the translation of the vp1682 mRNA was inhibited when both Hfq and Spot 42 were added to the in vitro translation reaction. The cytotoxic activity against infected Caco-2 cells was significantly increased in the Spot 42 deletion mutant (Δspf) at 4 h after infection as compared with the parental strain. Additionally, we observed that both VP1682 and VP1680 were more highly expressed in Δspf mutants than in the parental strain. These results indicate that Spot 42 post-transcriptionally regulates the expression of VP1682 in V. parahaemolyticus, which contributes to cytotoxicity in vivo.