Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(46): e202312310, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37795830

RESUMO

Na2 Ti6 O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium-ion batteries. In the present study, integrated modification of migration channels broadening, charge density re-distribution, and oxygen vacancies regulation are realized in case of Nb-doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g-1 . Moreover, unexpected low-temperature performance with a high discharge capacity of 143 mAh g-1 at 100 mA g-1 under -15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X-ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti-O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance.

2.
Sensors (Basel) ; 17(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28974004

RESUMO

In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

3.
Sensors (Basel) ; 16(7)2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455272

RESUMO

In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and implemented using the micromachining technology and the experimental study is carried out. The experimental tests illustrate that the vibration output can be reduced by 73.8% through the stiffness match method than the structure without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the scale factor.

4.
Environ Pollut ; 350: 124019, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663506

RESUMO

Lead(II) is a potential carcinogen of heavy-metal ions (HIs). With the wide application of Pb-bearing products including lead alloy products, and new-energy lead-ion batteries, lead pollution has become a tricky problem. To solve such a difficulty, novel ultrathin MoS2-vinyl hybrid membranes (MVHMs) with a "spring" effect were synthesized via co-polymerization of acrylic acid, styrene and molybdenum disulfide (MoS2) and their adsorptions for HIs were explored. The "spring" effect derived from the interaction between the tendency of the short polyacrylic acid (PAA) chain connected with MoS2 to spread outward and the coulomb force between layers from MoS2 (s-MoS2), which enlarge the spacing of MoS2 layers without changing the number of layers after membrane formation, which changes the swelling membrane to a dense membrane and reduces the original thickness from 0.5 cm to 0.011 mm in the thickness direction. The adsorption experiment revealed that these MVHMs had super adsorption performance and high selectivity for Pb2+ by comparison with other five metal ions: Cu2+, Cd2+, Ni2+, Cr3+ and Zn2+. Especially, the adsorption quantity of MVHMs for Pb2+ could approach 2468 mg/g and the maximum adsorption ratio of qe[Pb2+]/qe[Cu2+] can reach 10.909. These values were much larger than the data obtained with the adsorbents reported in the last decade. A variety of models are applied to evaluate the effect of ionic groups. It was confirmed that -COOH plays a key role in adsorption of HIs and s-MoS2 also has a certain contribution. Conversely, ion exchange plays only a minor role during the period of adsorption process. Effective diffusion coefficient (Deff) of Pb(II) had the largest values among these metal ions. Hence, these hybrid membranes are promising adsorbents for the removal of Pb2+ from water containing various ions.


Assuntos
Acrilatos , Dissulfetos , Chumbo , Molibdênio , Estireno , Molibdênio/química , Chumbo/química , Adsorção , Acrilatos/química , Dissulfetos/química , Estireno/química , Polimerização , Membranas Artificiais , Poluentes Químicos da Água/química , Metais Pesados/química
5.
Biomaterials ; 264: 120414, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980635

RESUMO

The treatment of chronic wounds is a major challenge in regenerative medicine, and angiogenesis is known to be critical for chronic wound healing. Hot springs with temperature in the range of 30-45 °C can promote blood circulation, and some hot spring elements including iron and silicon are also known to be active in promoting angiogenesis. Inspired by the hot spring function, we designed a novel bioactive photothermal hydrogel with "hot spring effect" based on fayalite (FA) and N, O-carboxymethyl chitosan (NOCS), which releases bioactive ions and has heating function to create hot ion environment in wound area. The hot spring-mimetic hydrogel showed significant enhancement of angiogenesis and chronic wound healing in vivo due to the in situ heating through photothermal effect combined with the bioactive ions (Fe2+ and SiO44-) released from the hydrogel. It is further confirmed that the synergetic effect of the mild heating and bioactive ions on angiogenesis was mainly because of the activation of different angiogenic factors and signaling pathways. Our study suggests that the hot spring-mimetic approach may be an effective strategy to design bioactive materials for promoting angiogenesis and tissue regeneration.


Assuntos
Fontes Termais , Hidrogéis , Medicina Regenerativa , Silício , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA