Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Curr Issues Mol Biol ; 46(1): 689-709, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248347

RESUMO

Leaf rust (Puccinia triticina Eriks) is a wheat disease causing substantial yield losses in wheat production globally. The identification of genetic resources with permanently effective resistance genes and the generation of mutant lines showing increased levels of resistance allow the efficient incorporation of these target genes into germplasm pools by marker-assisted breeding. In this study, new mutant (M3 generation) lines generated from the rust-resistant variety Kazakhstanskaya-19 were developed using gamma-induced mutagenesis through 300-, 350-, and 400-Gy doses. In field trials after leaf rust inoculation, 75 mutant lines showed adult plant resistance. These lines were evaluated for resistance at the seedling stage via microscopy in greenhouse experiments. Most of these lines (89.33%) were characterized as resistant at both developmental stages. Hyperspectral imaging analysis indicated that infected leaves of wheat genotypes showed increased relative reflectance in visible and near-infrared light compared to the non-infected genotypes, with peak means at 462 and 644 nm, and 1936 and 2392 nm, respectively. Five spectral indexes, including red edge normalized difference vegetation index (RNDVI), structure-insensitive pigment index (SIPI), ratio vegetation index (RVSI), water index (WI), and normalized difference water index (NDWI), demonstrated significant potential for determining disease severity at the seedling stage. The most significant differences in reflectance between susceptible and resistant mutant lines appeared at 694.57 and 987.51 nm. The mutant lines developed were also used for the development and validation of KASP markers for leaf rust resistance genes Lr1, Lr2a, Lr3, Lr9, Lr10, and Lr17. The mutant lines had high frequencies of "a" resistance alleles (0.88) in all six Lr genes, which were significantly associated with seedling resistance and suggest the potential of favorable haplotype introgression through functional markers. Nine mutant lines characterized by the presence of "b" alleles in Lr9 and Lr10-except for one line with allele "a" in Lr9 and three mutant lines with allele "a" in Lr10-showed the progressive development of fungal haustorial mother cells 72 h after inoculation. One line from 300-Gy-dosed mutant germplasm with "b" alleles in Lr1, Lr2a, Lr10, and Lr17 and "a" alleles in Lr3 and Lr9 was characterized as resistant based on the low number of haustorial mother cells, suggesting the contribution of the "a" alleles of Lr3 and Lr9.

2.
Mol Breed ; 44(1): 5, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38230361

RESUMO

With abundant available genomic data, genomic selection has become routine in many plant breeding programs. Multispectral data captured by UAVs showed potential for grain yield (GY) prediction in many plant species using machine learning; however, the possibilities of utilizing this data to augment genomic prediction models still need to be explored. We collected high-throughput phenotyping (HTP) multispectral data in a genotyped multi-environment large-scale field trial using two cost-effective cameras to fill this gap. We tested back to back the prediction ability of GY prediction models, including genomic (G matrix), multispectral-derived (M matrix), and environmental (E matrix) relationships using best linear unbiased predictor (BLUP) methodology in single and multi-environment scenarios. We discovered that M allows for GY prediction comparable to the G matrix and that models using both G and M matrices show superior accuracies and errors compared with G or M alone, both in single and multi-environment scenarios. We showed that the M matrix is not entirely environment-specific, and the genotypic relationships become more robust with more data capture sessions over the season. We discovered that the optimal time for data capture occurs during grain filling and that camera bands with the highest heritability are important for GY prediction using the M matrix. We showcased that GY prediction can be performed using only an RGB camera, and even a single data capture session can yield valuable data for GY prediction. This study contributes to a better understanding of multispectral data and its relationships. It provides a flexible framework for improving GS protocols without significant investments or software customization. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01449-w.

3.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475228

RESUMO

With the rapid progression of agricultural informatization technology, the methodologies of crop monitoring based on spectral technology are constantly upgraded. In order to carry out the efficient, precise and nondestructive detection of relative chlorophyll (SPAD) during the booting stage, we acquired hyperspectral reflectance data about spring wheat vertical distribution and adopted the fractional-order differential to transform the raw spectral data. After that, based on correlation analysis, fractional differential spectra and fractional differential spectral indices with strong correlation with SPAD were screened and fused. Then, the least-squares support vector machine (LSSSVM) and the least-squares support vector machine (SMA-LSSSVM) optimized on the slime mold algorithm were applied to construct the estimation models of SPAD, and the model accuracy was assessed to screen the optimal estimation models. The results showed that the 0.4 order fractional-order differential spectra had the highest correlation with SPAD, which was 9.3% higher than the maximum correlation coefficient of the original spectra; the constructed two-band differential spectral indices were more sensitive to SPAD than the single differential spectra, in which the correlation reached the highest level of 0.724. The SMA-LSSSVM model constructed based on the two-band fractional-order differential spectral indices was better than the single differential spectra and the integration of both, which realized the assessment of wheat SPAD.


Assuntos
Imageamento Hiperespectral , Triticum , Análise Espectral , Folhas de Planta , Análise dos Mínimos Quadrados
4.
Plant Cell Physiol ; 64(7): 729-745, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37026703

RESUMO

This study investigates carbon partitioning in the developing endosperm of a European variety of spring wheat subjected to moderately elevated daytime temperatures (27°C/16°C d/night) from anthesis to grain maturity. Elevated daytime temperatures caused significant reductions in both fresh and dry weights and reduced the starch content of harvested grains compared to plants grown under a 20°C/16°C d/night regimen. Accelerated grain development caused by elevated temperatures was accounted for by representing plant development as thermal time (°C DPA). We examined the effects of high-temperature stress (HTS) on the uptake and partitioning of [U-14C]-sucrose supplied to isolated endosperms. HTS caused reduced sucrose uptake into developing endosperms from the second major grain-filling stage (approximately 260°C DPA) up to maturity. Enzymes involved in sucrose metabolism were unaffected by HTS, whereas key enzyme activities involved in endosperm starch deposition such as ADP-glucose pyrophosphorylase and soluble isoforms of starch synthase were sensitive to HTS throughout grain development. HTS caused a decrease in other major carbon sinks such as evolved CO2, ethanol-soluble material, cell walls and protein. Despite reductions in the labeling of carbon pools caused by HTS, the relative proportions of sucrose taken up by endosperm cells allocated to each cellular pool remain unchanged, except for evolved CO2, which increased under HTS and may reflect enhanced respiratory activity. The results of this study show that moderate temperature increases can cause significant yield reductions in some temperate wheat cultivars chiefly through three effects: reduced sucrose uptake by the endosperm, reduced starch synthesis and increased partitioning of carbon into evolved CO2.


Assuntos
Carbono , Triticum , Temperatura , Triticum/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo , Sacarose/metabolismo
5.
Plant Dis ; 107(9): 2729-2735, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774578

RESUMO

Increased populations of Heterodera avenae in southeastern Idaho are associated with increased planting of susceptible cereal cultivars and lack of crop rotation. Identifying high-yield, resistant spring wheat cultivars with tolerance requires testing new genotypes and susceptibility assessments of marketed cultivars. We conducted two experiments to determine whether cultivars with putative resistance could maintain acceptable yield in the presence of H. avenae. We also evaluated the tolerance response in relation to previously tested cultivars. Seven spring wheat cultivars were planted in two irrigated commercial fields that were naturally infested with high populations of H. avenae. Measures of resistance, tolerance, and grain yield were assessed in aldicarb-treated versus nontreated plots. In aldicarb-treated plots in both years, grain yield of the susceptible cultivars Snow Crest, WestBred 936, WB9411, Patwin-515, and WB9668 was significantly increased. The expected yield increase with aldicarb was limited for the moderately susceptible Expresso due to water stress. 'WB-Rockland', carrying the Cre5 resistance gene, maintained its standard yield, while none of the other cultivars in the experiment showed resistance or tolerance. Our results indicated that aldicarb improves wheat grain yield in irrigated crop production systems, and although removed from the market, it is effective and has utility for research. The results also support the hypothesis that high yield susceptible cultivars can mask the effect of H. avenae on grain yield when managed appropriately.


Assuntos
Cistos , Tylenchoidea , Animais , Triticum/genética , Grão Comestível , Aldicarb , Idaho , Tylenchoidea/genética
6.
Plant Dis ; 107(12): 3727-3730, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37415357

RESUMO

Wheat streak mosaic disease is caused by wheat streak mosaic virus (WSMV) and two other viruses and persistently limits wheat yields in the Great Plains region of the United States. Seed transmission of viruses is an important consideration in international movement and is important epidemiologically. Seed transmission of WSMV in wheat was first reported from Australia in 2005, but there is little data from United States cultivars on the rate of seed transmission. In 2018, mechanically inoculated winter and spring wheat cultivars were evaluated in Montana. We found differences in WSMV seed transmission rates between winter and spring wheat, with average transmission rates in spring wheat (3.1%) being five times higher compared to winter wheat (0.6%). Seed transmission rates in spring wheat were twice as high as the highest previously reported transmission rate for individual genotypes, 1.5%. The results from this study provide a strong argument for increasing the current testing of seed for breeding purposes prior to international movement when WSMV has been observed and caution against using grain from WSMV-infected fields as seed source because it can heighten the risk of wheat streak mosaic outbreaks.


Assuntos
Melhoramento Vegetal , Doenças das Plantas , Montana , Grão Comestível
7.
Plant Dis ; 107(12): 3817-3824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37227435

RESUMO

Root-lesion nematode (RLN; Pratylenchus neglectus) is a migratory endoparasite and a major soilborne pathogen that affects wheat (Triticum spp.) production worldwide. Genetic resistance is one of the most economical and effective ways to manage P. neglectus in wheat. This study evaluated 37 local cultivars and germplasm lines in seven greenhouse experiments, including 26 hexaploid wheat, six durum wheat, two synthetic hexaploid wheat, one emmer wheat, and two triticale for P. neglectus resistance from 2016 to 2020. North Dakota field soils infested with two RLN populations (350 to 1,125 nematodes per kilogram of soil) were used for resistance screening under controlled greenhouse conditions. The final nematode population density for each cultivar and line was counted under the microscope to categorize the resistance ranking of these entries as resistant, moderately resistant, moderately susceptible, and susceptible. Out of the 37 cultivars and lines, one was classified as resistant (Brennan); 18 were moderately resistant (Divide, Carpio, Prosper, Advance, Alkabo, SY Soren, Barlow, Bolles, Select, Faller, Briggs, WB Mayville, SY Ingmar, W7984, PI 626573, Ben, Grandin, and Villax St. Jose); 11 were moderately susceptible; and seven were susceptible to P. neglectus. The resistant to moderately resistant lines identified in this study could be used in breeding programs after the resistance genes or loci are further elucidated. This research provides valuable information about P. neglectus resistance among wheat and triticale cultivars used in the Upper Midwest region of the United States.


Assuntos
Triticum , Tylenchoidea , Animais , Triticum/genética , Triticum/parasitologia , Locos de Características Quantitativas , North Dakota , Doenças das Plantas/parasitologia , Melhoramento Vegetal , Tylenchoidea/genética , Resistência à Doença/genética
8.
J Exp Bot ; 73(12): 4236-4249, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35383843

RESUMO

Increasing grain number through fine-tuning duration of the late reproductive phase (LRP; terminal spikelet to anthesis) without altering anthesis time has been proposed as a genetic strategy to increase yield potential (YP) of wheat. Here we conducted a modelling analysis to evaluate the potential of fine-tuning LRP in raising YP in irrigated mega-environments. Using the known optimal anthesis and sowing date of current elite benchmark genotypes, we applied a gene-based phenology model for long-term simulations of phenological stages and yield-related variables of all potential germplasm with the same duration to anthesis as the benchmark genotypes. These diverse genotypes had the same duration to anthesis but varying LRP duration. Lengthening LRP increased YP and harvest index by increasing grain number to some extent and an excessively long LRP reduced YP due to reduced time for canopy construction for high biomass production of pre-anthesis phase. The current elite genotypes could have their LRP extended for higher YP in most sites. Genotypes with a ratio of the duration of LRP to pre-anthesis phase of about 0.42 ensured high yields (≥95% of YP) with their optimal sowing and anthesis dates. Optimization of intermediate growth stages could be further evaluated in breeding programmes to improve YP.


Assuntos
Melhoramento Vegetal , Triticum , Biomassa , Grão Comestível , Reprodução , Triticum/genética
9.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328754

RESUMO

Global climate change is threatening wheat productivity; improved yield under drought conditions is urgent. Here, diverse spring-wheat lines (modern, old and wheat-rye introgressions) were examined in an image-based early-vigour assay and a controlled-conditions (Biotron) trial that evaluated 13 traits until maturity. Early root vigour was significantly higher in the old Swedish lines (root length 8.50 cm) and introgressed lines with 1R (11.78 cm) and 1RS (9.91 cm) than in the modern (4.20 cm) and 2R (4.67 cm) lines. No significant correlation was noted between early root and shoot vigour. A higher yield was obtained under early drought stress in the 3R genotypes than in the other genotype groups, while no clear patterns were noted under late drought. Evaluating the top 10% of genotypes in terms of the stress-tolerance index for yield showed that root biomass, grains and spikes per plant were accountable for tolerance to early drought, while 1000-grain weight and flag-leaf area were accountable for tolerance to late drought. Early root vigour was determined as an important focus trait of wheat breeding for tolerance to climate-change-induced drought. The responsible genes for the trait should be searched for in these diverse lines. Additional drought-tolerance traits determined here need further elaboration to identify the responsible genes.


Assuntos
Secas , Triticum , Mudança Climática , Fenótipo , Melhoramento Vegetal , Triticum/genética
10.
Molecules ; 27(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235200

RESUMO

The research object was the liquid protein hydrolysate "AGROMOREE" from the rainbow trout, which was provided by the company "Russian Aquaculture LLC". The purpose of this study was the evaluation of the effect of the hydrolysate "AGROMOREE" as a biostimulant on the growth and yield of wheat (Triticum aestivum L.). Biometric indicators of wheat (Triticum aestivum L.) growth were determined in the laboratory and in field tests. In the laboratory, the liquid concentrated hydrolysate was dried to facilitate its use. "AGROMOREE" promoted an increase in germination of 2-4% in all samples compared to the control samples, as well as an increase in the length and number of wheat roots. The biostimulant "AGROMOREE" was introduced in the soil in liquid form at about 3000 L/ha and 4000 L/ha in the field tests. This study showed that "ARGOMOREE" contributed to an increase in the length and quantity of wheat ears, the quantity of grains in the ear and the seed weight. At the same time, the quantity of productive stems increased, so that the biostimulant "AGROMOREE" increased the productivity by 3.9-6.3% with respect to the control sample. In general, using the biostimulant "AGROMOREE" on spring wheat seeds from 2019 in the growing season of 2021 provided an increase in yield from 0.21 t/ha to 0.28 t/ha. The maximum value of raw gluten content in the seed was 5.2%, higher than the content in the control. The content of the mass fraction of protein in the seed was in the range of 12.33-12.56%, i.e., 2% higher than that of the control sample. Thus, according to qualitative and quantitative indicators and the total productivity indicators, the biostimulant «AGROMOREE¼ can be used to increase wheat productivity and reduce the use of nitrogen fertilizers.


Assuntos
Oncorhynchus mykiss , Triticum , Animais , Fertilizantes , Glutens , Nitrogênio/metabolismo , Oncorhynchus mykiss/metabolismo , Hidrolisados de Proteína/farmacologia , Solo , Triticum/metabolismo
11.
J Exp Bot ; 72(20): 7203-7218, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34245278

RESUMO

To maximize the grain yield of spring wheat, flowering needs to coincide with the optimal flowering period (OFP) by minimizing frost and heat stress on reproductive development. This global study conducted a comprehensive modelling analysis of genotype, environment, and management to identify the OFPs for sites in irrigated mega-environments of spring wheat where the crop matures during a period of increasing temperatures. We used a gene-based phenology model to conduct long-term simulation analysis with parameterized genotypes to identify OFPs and optimal sowing dates for sites in irrigated mega-environments, considering the impacts of frost and heat stress on yield. The validation results showed that the gene-based model accurately predicted wheat heading dates across global wheat environments. The long-term simulations indicated that frost and heat stress significantly advanced or delayed OFPs and shrank the durations of OFPs in irrigated mega-environments when compared with OFPs where the model excluded frost and heat stress impacts. The simulation results (incorporating frost and heat penalties on yield) also showed that earlier flowering generally resulted in higher yields, and early sowing dates and/or early flowering genotypes were suggested to achieve early flowering. These results provided an interpretation of the regulation of wheat flowering to the OFP by the selection of sowing date and cultivar to achieve higher yields in irrigated mega-environments.


Assuntos
Grão Comestível , Triticum , Simulação por Computador , Estações do Ano , Temperatura , Triticum/genética
12.
Environ Res ; 195: 110824, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539831

RESUMO

The vegetations and fields experiments were conducted in 2017-2018 at Rumokai Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry. The influence of naturally occurring fulvic acids on the germination of spring wheat and barley and sugar beet seeds, development of plants and their yield and quality was investigated. The use of fulvic acids for seed dressing reliably increased the final germination percentage and decreased the mean germination time in spring wheat, spring barley, and sugar beet. It significantly reduced the number of spring wheat sprouts damaged by Fusarium sp. and the number of spring barley sprouts damaged by Fusarium sp. and Microdochium nivale. Fulvic acids increased the length of spring wheat and barley shoots and the air-dry weight of shoots and roots. The use of fulvic acids during plant vegetation reliably increased spring wheat grain yield and sugar beet roots yield, and improved yield quality. Combinations of fulvic acids with pesticides were also investigated. The use of fulvic acids in combination with pesticides used in sugar beet crops improved the action of those pesticides, so it was possible to reduce the rates used, thus reducing environmental pollution.


Assuntos
Beta vulgaris , Germinação , Ascomicetos , Benzopiranos , Grão Comestível , Sementes , Açúcares
13.
Curr Genomics ; 22(6): 440-449, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35340360

RESUMO

Developing climate-resilient wheat is a priority for South Asia since the effect of climate change will be pronounced on the major crops that are staple to the region. South Asia must produce >400 million metric tons (MMT) of wheat by 2050 to meet the demand. However, the current average yield <3 t/ha is not sufficient to meet the requirement. In this review, we are addressing how pre-breeding methods in wheat can address the gap in grain yield as well as reduce the bottleneck of genetic diversity. Physiological pre-breeding which incorporates screening of diverse germplasm from gene banks for physiological and agronomic traits, the strategic crossing of complementary traits, high throughput phenotyping, molecular markers-based generation advancement, genomic prediction, and validation of high-value heat and drought tolerant lines to South Asia can help to alleviate the drastic effect of climate change on wheat production. There are several gene banks, if utilized well, can play a major role in breeding for climate-resilient wheat. CIMMYT's wheat physiological pre-breeding has delivered several hundred lines via the Stress Adapted Trait Yield Nursery (SATYN) to the NARS in many South Asian countries; India, Pakistan, Nepal, Bangladesh, Afghanistan, and Iran. Some of these improved germplasms have resulted in varieties for farmer's field. We conclude the review by pointing out the importance of collaborative interdisciplinary translational research to alleviate the effects of climate change on wheat production in South Asia.

14.
Mol Biol Rep ; 47(1): 293-306, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31630318

RESUMO

Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 35K Axiom Wheat Breeder's Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality filtered SNPs, that were distributed across the B (~ 50%), A (~ 39%), and D (~ 10%) genomes. The total genetic distance coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon's information index (I) = 0.648, expected heterozygosity (He) = 0.456 and unbiased expected heterozygosity (uHe) = 0.456. To the best of our knowledge, this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association studies and marker assisted selection in wheat breeding programs.


Assuntos
Triticum/genética , Triticum/metabolismo , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Melhoramento Vegetal/métodos , Poaceae/genética , Polimorfismo de Nucleotídeo Único/genética
15.
Int J Biometeorol ; 62(12): 2197-2204, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368677

RESUMO

Understanding the impacts of climate change on crop yield is important for improving crop growth and yield formation in northwestern China. In this study, we evaluated the relationship between meteorological dryness/wetness conditions and spring wheat yield in the Ili river basin (IRB). The climate and yield data from 1961 to 2013 were collected to analyze characteristics and correlations between these two variables using the standardized precipitation evapotranspiration index (SPEI), yield detrending method, modified Mann-Kendall test and Spearman correlation analysis. Main results were as follows: (1) correlations between monthly SPEI values (MSV) and climatic yield of spring wheat indicated that the dryness/wetness condition in May was a key factor affecting yield in the whole region; (2) although the MSV in May and yield fluctuated from negative to positive values in time, the severely and extremely dryness events were in good agreement with the higher yield losses; (3) each increase of 0.5 MSV in May promoted over 3% increase of yield in most part of IRB; however, the larger variability of MSV in May resulted in larger yield fluctuations; and (4) the Tibetan Plateau index in April showed significant correlations with the MSV in May and yield, which provided a precursory signal for decision-makers to better understand potential yield fluctuations.


Assuntos
Conceitos Meteorológicos , Triticum/crescimento & desenvolvimento , China , Estações do Ano
16.
Glob Chang Biol ; 23(6): 2464-2472, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27860004

RESUMO

Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production.


Assuntos
Temperatura Alta , Triticum/crescimento & desenvolvimento , Agricultura , Grão Comestível , Índia , Temperatura
17.
Breed Sci ; 66(2): 281-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162499

RESUMO

Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants.

18.
J Invertebr Pathol ; 120: 43-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944009

RESUMO

Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are serious soil dwelling pests of small grains, corn, sugar beets, and potatoes. Limonius californicus and Hypnoidus bicolor are the predominant wireworm species infesting wheat in Montana, particularly in the 'Golden Triangle' area of north-central Montana. Wireworm populations in field crops are increasing, but currently available insecticides provide only partial control, and no alternative management tools exist. In our study, three entomopathogenic fungi were tested for their efficacy against wireworms in spring wheat at two field locations (Ledger and Conrad, Montana, USA) in 2013. The three fungi (Metarhizium brunneum F52, Beauveria bassiana GHA, and Metarhizium robertsii DWR 346) were evaluated as seed-coat, in-furrow granular, and soil band-over-row drench applications in addition to imidacloprid (Gaucho® 600) seed treatment (as a chemical check), the approach currently being used by growers. Wireworm damage in these treatments was evaluated as standing plant counts, wireworm population surveys, and yield. The three fungi, applied as formulated granules or soil drenches, and the imidacloprid seed treatment all resulted in significantly higher plant stand counts and yields at both locations than the fungus-coated seed treatments or the untreated control. Significant differences were detected among the application methods but not among the species of fungi within each application method. All three fungi, when applied as granules in furrow or as soil drenches, were more effective than when used as seed-coating treatments for wireworm control, and provided an efficacy comparable or superior to imidacloprid. The fungi used in this study provided significant plant and yield protection under moderate wireworm pressure, supporting their value in the management of this pest.


Assuntos
Beauveria , Besouros , Metarhizium , Controle Biológico de Vetores/métodos , Triticum/microbiologia , Animais , Produtos Agrícolas/microbiologia , Larva/microbiologia , Doenças das Plantas/microbiologia
19.
J Sci Food Agric ; 94(2): 205-12, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23674491

RESUMO

BACKGROUND: High moisture before harvest can cause sprouting of the wheat kernel, which is termed pre-harvest sprouting (PHS). The aim of this study was to examine the variation in physicochemical properties of proteins in PHS-damaged (sprouted) hard red and white spring wheat genotypes. Specifically, protein content, enzyme activity and degradation of proteins were evaluated in sound and PHS-damaged wheat. RESULTS: Protein contents of sprouted wheat samples were lower than that of non-sprouted samples; however, their differences were not significantly (P > 0.05) correlated with sprouting score. Sodium dodecyl sulfate (SDS) buffer extractable proteins (EXP) and unextractable proteins (UNP) were analyzed by high-performance size exclusion chromatography. PHS damage elevated endoprotease activity and consequently increased the degradation of polymeric UNP and free asparagine concentration in wheat samples. Free asparagine is known to be a precursor for formation of carcinogenic acrylamide during high heat treatment, such as baking bread. Free asparagine content had significant correlations (P < 0.01) with sprouting score, endoprotease activity and protein degradation. CONCLUSIONS: Genotypes with higher endoprotease activity tend to exhibit a larger degree of degradation of UNP and higher free asparagine concentration in sprouted wheat samples.


Assuntos
Asparagina/genética , Genótipo , Germinação , Peptídeo Hidrolases/genética , Proteínas de Plantas/genética , Sementes/metabolismo , Triticum/genética , Acrilamida/química , Asparagina/química , Asparagina/metabolismo , Pão , Culinária , Dieta , Temperatura Alta , Humanos , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água
20.
J Food Sci Technol ; 51(6): 1066-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24876638

RESUMO

The effects of water extractable pentosans (WEP) and water unextractable pentosans (WUP) on pasting properties in flours of eight different hard white spring wheat (HWSW) cultivars was studied. WEP and WUP isolated from a hard wheat flour were added to each of the cultivars at 1% and 2% level. The results indicated that WEP exhibited a pronounced effect on pasting properties as compared to WUP and variety. Univariate analysis of variance (ANOVA) was used to evaluate sources of variation. The variety significantly (P < 0.001) influenced all the pasting parameters. WUP caused significant (P < 0.001) variation in paste viscosities (except breakdown). WEP influenced more pronouncedly the hot paste, cold paste, breakdown and setback viscosities with F values-221.802, 214.286, 98.073 and 120.159, respectively. Variety-by-WEP interaction exhibited significant (P < 0.01) influence on pasting time, peak, hot paste and cold paste viscosities. Whereas, variety-by-WUP interaction only significantly (P < 0.001) influenced the pasting- time and -temperature. Duncan's test was used to analyze the significant difference (P < 0.05) within the variety. The results revealed that WUP did not induce significant (P < 0.05) influence on all the pasting parameters, whereas, WEP influenced significantly (P < 0.05) the paste viscosities of some of the varieties. It was also found that the addition of WEP remarkably reduced the setback, hot paste, cold paste viscosities and increased the breakdown viscosity in all cultivar flours. The effect of WEP was greater at higher level of supplementation on paste viscosities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA