Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt A): 116396, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244280

RESUMO

In this work, nanomaterials of the SrMoO4/g-C3N4 heterostructure were synthesized in a single step by the sonochemical method with controlled temperatures. Structural and morphological investigations indicate the formation of heterojunctions, revealing the presence of g-C3N4 (CN) in the heterostructures and an interface region between the phases. Optical analyzes show broadening of the wavelength absorption range and a decrease in the photoluminescence (PL) intensity of the heterojunctions compared to the CN emission spectrum, proving a decrease in the recombination of the photogenerated charges. The results of the photocatalytic tests indicate that the insertion of CN promoted photocatalytic degradation of the Methylene Blue (MB), Rhodamine B (RhB) and Crystal Violet (CV) organic contaminants, up to 99.58%, 100% and 98.65%, respectively. The mixture of dyes used and reuse cycles was performed to analyze the applicability of the compounds in a real situation.

2.
Materials (Basel) ; 17(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930256

RESUMO

In recent years, there has been a significant interest in the advancement of electrochemical sensing platforms to detect antipyretic drugs with high sensitivity and selectivity. The electrochemical determination of acetaminophen (PCT) was studied with strontium molybdate with a functionalized carbon nanotube (SrMoO4@f-CNF) nanocomposite. The SrMoO4@f-CNF nanocomposite was produced by a facial hydrothermal followed by sonochemical treatment, resulting in a significant enhancement in the PCT determination. The sonochemical process was applied to incorporate SrMoO4 nanoparticles over f-CNF, enabling a network-like structure. Moreover, the produced SrMoO4@f-CNF composite structural, morphological, and spectroscopic properties were confirmed with XRD, TEM, and XPS characterizations. The synergistic effect between SrMoO4 and f-CNF contributes to the lowering of the charge transfer resistance (Rct=85 Ω·cm2), a redox potential of Epc=0.15 V and Epa=0.30 V (vs. Ag/AgCl), and a significant limit of detection (1.2 nM) with a wide response range of 0.01-28.48 µM towards the PCT determination. The proposed SrMoO4@f-CNF sensor was studied with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques and demonstrated remarkable electrochemical properties with a good recovery range in real-sample analysis.

3.
Methods Appl Fluoresc ; 12(1)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703890

RESUMO

The challenge of building a highly reliable contactless temperature probe with high sensitivity, good temperature-induced color discriminability, and economical synthesis has prompted the research community to work in the field of rare-earth-based luminescence thermometry. Moreover, the fast-growing market for optoelectronic devices has increased the demand for tunable color-emitting phosphors. In this study, Dy3+/Eu3+co-doped SrMoO4phosphors were developed as tunable color-emitting source and dual-mode luminescence thermometer. A facile and cost-effective auto-combustion method was used to synthesize the phosphors. Our work demonstrates a viable scheme for tailoring the emission of single-phase phosphors by precisely controlling the dopant concentrations and by modulating excitation wavelength. The overall emission is tuned from greenish-yellow to white and greenish-yellow to reddish-orange. A detailed energy transfer process from the host to the Ln3+ions and between the Ln3+ions is discussed. Further, anti-thermal quenching in the emission of Dy3+ion is observed when excited with 297 nm. The dual-mode luminescence thermometry has been studied by analyzing the fluorescence intensity ratio of Dy3+and Eu3+ions upon excitation at 297 nm. The maximum relative sensitivity value for 4% Eu3+co-doped SrMoO4:4%Dy3+phosphor is 1.46% K-1at 300 K. Furthermore, the configurational coordinate diagram is presented to elucidate the nature of temperature-dependent emission. Therefore, our research opens up new avenues for the development of color-tunable luminescent materials for various optoelectronic and temperature-sensing applications.

4.
Materials (Basel) ; 13(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036294

RESUMO

New polycrystalline SrMo1-xMxO4-δ (M = Fe and Cr) scheelite oxides have been prepared by topotactical oxidation, by annealing in air at 500 °C, from precursor perovskites with the stoichiometry SrMo1-xMxO3-δ (M = Fe and Cr). An excellent reversibility between the oxidized Sr(Mo,M)O4-δ scheelite and the reduced Sr(Mo,M)O3-δ perovskite phase accounts for the excellent behavior of the latter as anode material in solid-oxide fuel cells. A characterization by X-ray powder diffraction (XRD) and neutron powder diffraction (NPD) has been carried out to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88). The Rietveld-refinement from NPD data at room temperature shows evidence of oxygen vacancies in the structure, due to the introduction of Fe3+/Cr4+ cations in the tetrahedrally-coordinated B sublattice, where Mo is hexavalent. A thermal analysis of the reduced perovskite (SrMo1-xMxO3-δ) in oxidizing conditions confirms the oxygen stoichiometry obtained by NPD data; the stability range of the doped oxides, below 400-450 °C, is lower than that for the parent SrMoO3 oxide. The presence of a Mo4+/Mo5+ mixed valence in the reduced SrMo1-xMxO3-δ perovskite oxides confers greater instability against oxidation compared with the parent oxide. Finally, an XPS study confirms the surface oxidation states of Mo, Fe, and Cr in the oxidized samples SrMo0.9Fe0.1O4-δ and SrMo0.8Cr0.2O4-δ.

5.
J Colloid Interface Sci ; 531: 181-188, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031260

RESUMO

Quartz substrate supported Praseodymium (Pr) doped strontium molybdate (SrMoO4) thin films with good uniformity and outstanding fluorescent properties are successfully fabricated via a facile polymer-assisted deposition (PAD) method. In combination with the strong chelating effect of water-soluble polymer on metal cations, the free cations without chelating are effectively ruled out but the remaining chelating metal cations are employed for the highly uniform and accurate stoichiometry luminescent SrMoO4: Pr thin films, layer-by-layer mounting on the common quartz substrates. More importantly, the excellent release of stress from polymer during the growth process of epitaxial thin film can effectively overcome the mismatch between thin film and common quartz substrate and then guarantee the quality of thin film. Under the ultraviolet (UV) light excitation, the samples show high luminescence intensity both in visible and near-infrared (NIR) regions peaked at 646 nm and 1037 nm, mainly ascribing to the transitions of 3P0 → 3F2 and 1G4 → 3H4 of Pr3+ ions. The luminescent properties can be tailored by optimizing the number of spin-coated layers and doping concentrations. The maximum emission occurs at 4 mol% of Pr3+ dopant, and it exhibits an impressive high photoluminescence quantum yield (QY) of up to 86.12%. These results evidently demonstrate the present PAD method is a useful prototype for preparing high performance luminescent thin films even on the cheap quartz substrate.

6.
Ultrason Sonochem ; 21(5): 1736-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24746510

RESUMO

Three-dimensional (3D) well-defined SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures of obvious sphere-like shape have been successfully synthesized using a large-scale and facile sonochemical route without using any catalysts or templates. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of SrMoO4 and external factor, namely the ultrasonic time and the pH value, are responsible for the ultimate shape evolutions of the product. The possible formation mechanism for the product is presented. Additionally, the PL properties of SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures were investigated in detail. The Ln(3+) ions doped SrMoO4 samples exhibit respective bright red-orange, yellow, green and white light of Eu(3+), Sm(3+), Tb(3+) and Dy(3+) under ultraviolet excitation, and have potential application in the field of color display. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating about the properties of molybdate materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA