Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.125
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(22): 4788-4802.e15, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37741279

RESUMO

Gravity controls directional growth of plants, and the classical starch-statolith hypothesis proposed more than a century ago postulates that amyloplast sedimentation in specialized cells initiates gravity sensing, but the molecular mechanism remains uncharacterized. The LAZY proteins are known as key regulators of gravitropism, and lazy mutants show striking gravitropic defects. Here, we report that gravistimulation by reorientation triggers mitogen-activated protein kinase (MAPK) signaling-mediated phosphorylation of Arabidopsis LAZY proteins basally polarized in root columella cells. Phosphorylation of LAZY increases its interaction with several translocons at the outer envelope membrane of chloroplasts (TOC) proteins on the surface of amyloplasts, facilitating enrichment of LAZY proteins on amyloplasts. Amyloplast sedimentation subsequently guides LAZY to relocate to the new lower side of the plasma membrane in columella cells, where LAZY induces asymmetrical auxin distribution and root differential growth. Together, this study provides a molecular interpretation for the starch-statolith hypothesis: the organelle-movement-triggered molecular polarity formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plastídeos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Sensação Gravitacional , Raízes de Plantas/metabolismo , Plastídeos/metabolismo , Amido/metabolismo , Proteínas de Membrana/metabolismo
2.
Plant Cell ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39293039

RESUMO

The endosperm in cereal grains is instrumental in determining grain yield and seed quality, as it controls starch and seed storage protein (SSP) production. In this study, we identified a specific nuclear factor-Y (NF-Y) trimeric complex in wheat (Triticum aestivum L.), consisting of TaNF-YA3-D, TaNF-YB7-B, and TaNF-YC6-B, and exhibiting robust expression within the endosperm during grain filling. Knockdown of either TaNF-YA3 or TaNF-YC6 led to reduced starch but increased gluten protein levels. TaNF-Y indirectly boosted starch biosynthesis genes by repressing TaNAC019, a repressor of cytosolic small ADP-glucose pyrophosphorylase 1a (TacAGPS1a), sucrose synthase 2 (TaSuS2), and other genes involved in starch biosynthesis. Conversely, TaNF-Y directly inhibited the expression of Gliadin-γ-700 (TaGli-γ-700) and low molecular weight-400 (TaLMW-400). Furthermore, TaNF-Y components interacted with SWINGER (TaSWN), the histone methyltransferase subunit of Polycomb repressive complex 2 (PRC2), to repress TaNAC019, TaGli-γ-700, and TaLMW-400 expression through trimethylation of histone H3 at lysine 27 (H3K27me3) modification. Notably, weak mutation of FERTILIZATION INDEPENDENT ENDOSPERM (TaFIE), a core PRC2 subunit, reduced starch but elevated gliadin and LMW-GS contents. Intriguingly, sequence variation within the TaNF-YB7-B coding region was linked to differences in starch and SSP content. Distinct TaNF-YB7-B haplotypes affect its interaction with TaSWN-B, influencing the repression of targets like TaNAC019 and TaGli-γ-700. Our findings illuminate the intricate molecular mechanisms governing TaNF-Y-PRC2-mediated epigenetic regulation for wheat endosperm development. Manipulating the TaNF-Y complex holds potential for optimizing grain yield and enhancing grain quality.

3.
Proc Natl Acad Sci U S A ; 121(36): e2410598121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190344

RESUMO

To counter the rising incidence of diabetes and to meet the daily protein needs, we created low glycemic index (GI) rice varieties with protein content (PC) surpassing 14%. In the development of recombinant inbred lines using Samba Mahsuri and IR36 amylose extender (IR36ae) as parental lines, we identified quantitative trait loci and genes associated with low GI, high amylose content (AC), and high PC. By integrating genetic techniques with classification models, this comprehensive approach identified candidate genes on chromosome 2 (qGI2.1/qAC2.1 spanning the region from 18.62 Mb to 19.95 Mb), exerting influence on low GI and high amylose. Notably, the phenotypic variant with high value was associated with the recessive allele of the starch branching enzyme 2b (sbeIIb). The genome-edited sbeIIb line confirmed low GI phenotype in milled rice grains. Further, combinations of alleles created by the highly significant SNPs from the targeted associations and epistatically interacting genes showed ultralow GI phenotypes with high amylose and high protein. Metabolomics analysis of rice with varying AC, PC, and GI revealed that the superior lines of high AC and PC, and low GI were preferentially enriched in glycolytic and amino acid metabolisms, whereas the inferior lines of low AC and PC and high GI were enriched with fatty acid metabolism. The high amylose high protein recombinant inbred line (HAHP_101) was enriched in essential amino acids like lysine. Such lines may be highly relevant for food product development to address diabetes and malnutrition.


Assuntos
Amilose , Índice Glicêmico , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/metabolismo , Amilose/metabolismo , Amilose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Fenótipo , Genômica/métodos , Multiômica
4.
Proc Natl Acad Sci U S A ; 121(3): e2309666121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190535

RESUMO

Starch is one of the major carbohydrate storage compounds in plants. The biogenesis of starch granules starts with the formation of initials, which subsequently expand into granules. Several coiled-coil domain-containing proteins have been previously implicated with the initiation process, but the mechanisms by which they act remain largely elusive. Here, we demonstrate that one of these proteins, the thylakoid-associated MAR-BINDING FILAMENT-LIKE PROTEIN 1 (MFP1), specifically determines the subchloroplast location of initial formation. The expression of MFP1 variants "mis"-targeted to specific locations within chloroplasts in Arabidopsis results in distinctive shifts in not only how many but also where starch granules are formed. Importantly, "re" localizing MFP1 to the stromal face of the chloroplast's inner envelope is sufficient to generate starch granules in this aberrant position. These findings provide compelling evidence that a single protein MFP1 possesses the capacity to direct the initiation and biosynthesis machinery of starch granules.


Assuntos
Arabidopsis , Metabolismo dos Carboidratos , Arabidopsis/genética , Cloroplastos/genética , Amido , Tilacoides
5.
Proc Natl Acad Sci U S A ; 120(19): e2220622120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126676

RESUMO

The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.


Assuntos
Diabetes Mellitus Tipo 2 , Oryza , Sintase do Amido , Amido Resistente/metabolismo , Oryza/genética , Sintase do Amido/genética , Melhoramento Vegetal , Amido , Amilose , Proteínas de Plantas/genética
6.
Proc Natl Acad Sci U S A ; 120(27): e2300166120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364120

RESUMO

The earliest evidence of agriculture in the Horn of Africa dates to the Pre-Aksumite period (ca. 1600 BCE). Domesticated C3 cereals are considered to have been introduced from the Near East, whereas the origin (local or not) and time of domestication of various African C4 species such as sorghum, finger millet, or t'ef remain unknown. In this paper, we present the results of the analysis of microbotanical residues (starch and phytoliths) from grinding stones recovered from two archaeological sites in northeastern Tigrai (Ethiopia), namely Mezber and Ona Adi. Together, both sites cover a time period that encompasses the earliest evidence of agriculture in the region (ca. 1600 BCE) to the fall of the Kingdom of Aksum (ca. 700 CE). Our data indicate that these communities featured complex mixed economies which included the consumption of both domestic and wild plant products since the Initial Pre-Aksumite Phase (ca. 1600 to 900 BCE), including C3 crops and legumes, but also C4 cereals and geophytes. These new data expand the record of C4 plant use in the Horn of Africa to over 1,000 y. It also represents the first evidence for the consumption of starchy products in the region. These results have parallels in the wider northeastern African region where complex food systems have been documented. Altogether, our data represent a significant challenge to our current knowledge of Pre-Aksumite and Aksumite economies, forcing us to rethink the way we define these cultural horizons.


Assuntos
Domesticação , Grão Comestível , Produtos Agrícolas , Agricultura , Etiópia
7.
Plant J ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254098

RESUMO

Previously, in Arabidopsis thaliana, we found atypical spherical starch granules in dpe2ss4 and dpe2phs1ss4. However, the mechanism of such abnormal morphogenesis is still obscure. By tracking starch granule length and thickness with leaf ageing, we reported that the starch granules in dpe2phs1ss4 gradually change to a spherical shape over time. In comparison, Col-0 and the parental line ss4 did not exhibit macroscopic morphological alteration. In this study, firstly, we specify that the additional lack of DPE2 resulted in the gradual alteration of starch granule morphology over time. Similar gradual morphological alterations were also found in dpe2, mex1, and sex4 but not in the other starch degradation-related mutants, such as sex1-8, pwd, and bam3. The gradual alteration of starch morphology can be eliminated by omitting the dark phase, suggesting that the particular impaired starch degradation in dpe2- and mex1-related mutants influences starch morphology. Secondly, we observed that spherical starch morphology generation was accompanied by prominent elevated short glucan chains of amylopectin and an increased amylose proportion. Thirdly, the interplay between soluble starch synthase 2 and branching enzymes was affected and resulted in the formation of spherical starch granules. The resulting spherical starch granules allow for elevated starch synthesis efficiency. Fourthly, the starch phosphate content at the granule surface correlated with the morphology alteration of the starch granules. Herewith, we propose a model that spherical starch granules, accumulated in mutants with a misbalance of the starch degradation pathway, are result of elevated starch synthesis to cope with overloaded carbohydrates.

8.
Plant J ; 119(2): 658-675, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678590

RESUMO

Heat stress poses a significant threat to maize, especially when combined with drought. Recent research highlights the potential of water replenishment to ameliorate grain weight loss. However, the mitigating mechanisms of heat in drought stress, especially during the crucial early grain-filling stage, remain poorly understood. We investigated the mechanism for mitigating heat in drought stress by water replenishment from the 12th to the 32nd days after silking in a controlled greenhouse experiment (Exp. I) and field trial (Exp. II). A significant reduction in grain weight was observed in heat stress compared to normal conditions. When water replenishment was applied to increase soil water content (SWC) under heat stress, the grain yield exhibited a notable increase ranging from 28.4 to 76.9%. XY335 variety was used for transcriptome sequencing to analyze starch biosynthesis and amino acid metabolisms in Exp. I. With water replenishment, the transcripts of genes responsible for trehalose 6-phosphate phosphates (TPP), alpha-trehalase (TRE), ADP-glcpyrophosphorylase, and starch synthase activity were stimulated. Additionally, the expression of genes encoding TPP and TRE contributed to an enhanced conversion of trehalose to glucose. This led to the conversion of sucrose from glucose-1-phosphate to ADP-glucose and ADP-glucose to amylopectin, ultimately increasing starch production by 45.1%. Water replenishment to boost SWC during heat stress also elevated the levels of essential amino acids in maize, including arginine, serine, tyrosine, leucine, glutamic acid, and methionine, providing valuable support to maize plants in adversity. Field trials further validated the positive impact of water replenishment on SWC, resulting in a notable increase in grain yield ranging from 7.1 to 9.2%. This study highlights the vital importance of adapting to abiotic stress and underscores the necessity of developing strategies to counteract its adverse effects on crop yield.


Assuntos
Aminoácidos , Secas , Sacarose , Água , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/metabolismo , Aminoácidos/metabolismo , Água/metabolismo , Sacarose/metabolismo , Grão Comestível/fisiologia , Grão Comestível/genética , Temperatura Alta , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/fisiologia
9.
Plant J ; 118(6): 1937-1954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491870

RESUMO

Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.


Assuntos
Resposta ao Choque Frio , Frutas , Regulação da Expressão Gênica de Plantas , Musa , Proteínas de Plantas , Musa/genética , Musa/metabolismo , Musa/fisiologia , Frutas/genética , Frutas/metabolismo , Frutas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Parede Celular/metabolismo , Amido/metabolismo
10.
Plant J ; 119(5): 2181-2198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981001

RESUMO

Understanding and optimizing the process of grain filling helps the quest to maximize rice (Oryza sativa L.) seed yield and quality, yet the intricate mechanisms at play remain fragmented. Transcription factors (TFs) are major players in the gene networks underlying the grain filling process. Here, we employed grain incomplete filling (OsGIF1)/cell wall invertase 2, a key gene involved in grain filling, to explore its upstream TFs and identified a bZIP family TF, OsbZIP10, to be a transcriptional activator of OsGIF1. Rice grains of the knockouts of OsbZIP10 showed increased white-core rates but lower amylose content (AC), leading to better eating and cooking qualities in all genetic backgrounds investigated, though the impact of mutations in OsbZIP10 on grain weight depended on genetic background. Multi-omics analyses suggested that, in addition to OsGIF1, multiple genes involved in different biological processes contributing to grain filling were targeted by OsbZIP10, including OsAGPS1, a gene encoding the ADP-Glc pyrophosphorylase (AGPase) small subunit, and genes contributing to homeostasis of reactive oxygen species. Distinct genetic make-up was observed in OsbZIP10 between japonica and indica rice varieties, with the majority varieties of each subspecies belonging to two different haplotypes that were closely associated with AC. Overexpressing the haplotype linked to high-AC in the low-AC genetic background increased AC. Overall, this study sheds crucial light on the significance of the OsbZIP10-OsGIF1 module in the determination of rice grain quality, offering a potential avenue for genetic engineering of rice to produce seeds with tailored attributes.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Fatores de Transcrição , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sementes/genética , Sementes/metabolismo , Amilose/metabolismo
11.
Plant J ; 119(4): 2045-2062, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961707

RESUMO

Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.


Assuntos
Carbono , Parede Celular , Inositol , Manihot , Raízes de Plantas , Rafinose , Amido , Amido/metabolismo , Manihot/genética , Manihot/metabolismo , Carbono/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Parede Celular/metabolismo , Inositol/metabolismo , Rafinose/metabolismo , Genótipo , Carotenoides/metabolismo
12.
Trends Genet ; 38(3): 218-221, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34702578

RESUMO

Implementations and improvements of genome editing techniques used in plant science have increased exponentially. For some crops, such as potato, the use of transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) has moved to the next step of trait development and field trials, and should soon be applied to commercial cultivation.


Assuntos
Edição de Genes , Solanum tuberosum , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Solanum tuberosum/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
13.
J Proteome Res ; 23(5): 1649-1665, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574199

RESUMO

Plant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes. We devised a proteomics method to discern the protein content of these pastes. Protocols involved extracting soluble proteins using 0.5 M NaCl and 30 mM Tris-HCl solutions and then targeting insoluble proteins, such as gliadins and glutenins, with a buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, and 75 mM DTT. Flour paste's proteome is diverse (1942 proteins across 759 groups), contrasting with starch paste's predominant starch-associated protein makeup (218 proteins in 58 groups). Transformation into pastes reduces proteomes' complexity. Testing on historical bookbindings confirmed the use of flour-based glue, which is rich in gluten and serpins. High levels of deamidation were detected, particularly for glutamine residues, which can impact the solubility and stability of the glue over time. The mass spectrometry proteomics data have been deposited to the ProteomeXchange, Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the data set identifier MSV000093372 (ftp://MSV000093372@massive.ucsd.edu).


Assuntos
Adesivos , Farinha , Glutens , Proteoma , Amido , Triticum , Triticum/química , Farinha/análise , Amido/química , Proteoma/análise , Proteoma/química , Adesivos/química , Glutens/química , Glutens/análise , Proteômica/métodos , Proteínas de Plantas/análise , Gliadina/química , Gliadina/análise
14.
Plant J ; 114(1): 110-123, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710626

RESUMO

As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Amido/metabolismo , Carbono/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Arseniato Redutases/genética , Arseniato Redutases/metabolismo
15.
Plant J ; 113(2): 342-356, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36444716

RESUMO

Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.


Assuntos
Solanum tuberosum , Amido , Amido/metabolismo , Vacúolos/metabolismo , Plantas/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Maltose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Plant J ; 114(5): 1037-1058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092344

RESUMO

Plant metabolism is finely orchestrated to allow the occurrence of complementary and sometimes opposite metabolic pathways. In part this is achieved by the allosteric regulation of enzymes, which has been a cornerstone of plant research for many decades. The completion of the Arabidopsis genome and the development of the associated toolkits for Arabidopsis research moved the focus of many researchers to other fields. This is reflected by the increasing number of high-throughput proteomic studies, mainly focused on post-translational modifications. However, follow-up 'classical' biochemical studies to assess the functions and upstream signaling pathways responsible for such modifications have been scarce. In this work, we review the basic concepts of allosteric regulation of enzymes involved in plant carbon metabolism, comprising photosynthesis and photorespiration, starch and sucrose synthesis, glycolysis and gluconeogenesis, the oxidative pentose phosphate pathway and the tricarboxylic acid cycle. Additionally, we revisit the latest results on the allosteric control of the enzymes involved in these pathways. To conclude, we elaborate on the current methods for studying protein-metabolite interactions, which we consider will become crucial for discoveries in the future.


Assuntos
Arabidopsis , Carbono , Carbono/metabolismo , Arabidopsis/metabolismo , Proteômica , Fotossíntese , Via de Pentose Fosfato , Processamento de Proteína Pós-Traducional
17.
Plant J ; 116(1): 38-57, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329210

RESUMO

Cassava's storage roots represent one of the most important sources of nutritional carbohydrates worldwide. Particularly, smallholder farmers in sub-Saharan Africa depend on this crop plant, where resilient and yield-improved varieties are of vital importance to support steadily increasing populations. Aided by a growing understanding of the plant's metabolism and physiology, targeted improvement concepts already led to visible gains in recent years. To expand our knowledge and to contribute to these successes, we investigated storage roots of eight cassava genotypes with differential dry matter content from three successive field trials for their proteomic and metabolic profiles. At large, the metabolic focus in storage roots transitioned from cellular growth processes toward carbohydrate and nitrogen storage with increasing dry matter content. This is reflected in higher abundance of proteins related to nucleotide synthesis, protein turnover, and vacuolar energization in low starch genotypes, while proteins involved in sugar conversion and glycolysis were more prevalent in high dry matter genotypes. This shift in metabolic orientation was underlined by a clear transition from oxidative- to substrate-level phosphorylation in high dry matter genotypes. Our analyses highlight metabolic patterns that are consistently and quantitatively associated with high dry matter accumulation in cassava storage roots, providing fundamental understanding of cassava's metabolism as well as a data resource for targeted genetic improvement.


Assuntos
Manihot , Amido , Amido/metabolismo , Manihot/metabolismo , Proteômica , Fosforilação , Verduras/metabolismo , Genótipo , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
18.
Plant J ; 116(3): 650-668, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531328

RESUMO

Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.


Assuntos
Arabidopsis , Relógios Circadianos , Ritmo Circadiano/fisiologia , Arabidopsis/metabolismo , Ecossistema , Fotossíntese/fisiologia , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas
19.
Plant J ; 115(5): 1261-1276, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37256847

RESUMO

Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+ translocating pyrophosphatase (V-PPase) is a major quantitative trait locus in indica rice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression of V-PPase could reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness of japonica rice has not been linked with V-PPase. Here, we describe promoter targeting of the japonica V-PPase allele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 suppressed V-PPase activity, reduced grain chalkiness and impacted post-germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity of V-PPase that presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.


Assuntos
Oryza , Oryza/metabolismo , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Amido/metabolismo , Mutagênese
20.
Proteins ; 92(8): 984-997, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641972

RESUMO

Glycoside hydrolase (GH) family 13 is among the main families of enzymes acting on starch; recently, subfamily 47 of GH13 (GH13_47) has been established. The crystal structure and function of a GH13_47 enzyme from Bacteroides ovatus has only been reported to date. This enzyme has α-amylase activity, while the GH13_47 enzymes comprise approximately 800-900 amino acid residues which are almost double those of typical α-amylases. It is important to know how different the GH13_47 enzymes are from other α-amylases. Rhodothermus marinus JCM9785, a thermophilic bacterium, possesses a gene for the GH13_47 enzyme, which is designated here as RmGH13_47A. Its structure has been predicted to be composed of seven domains: N1, N2, N3, A, B, C, and D. We constructed a plasmid encoding Gly266-Glu886, which contains the N3, A, B, and C domains and expressed the protein in Escherichia coli. The enzyme hydrolyzed starch and pullulan by a neopullulanase-type action. Additionally, the enzyme acted on maltotetraose, and saccharides with α-1,6-glucosidic linkages were observed in the products. Following the replacement of the catalytic residue Asp563 with Ala, the crystal structure of the variant D563A in complex with the enzymatic products from maltotetraose was determined; as a result, electron density for an α-1,6-branched pentasaccharide was observed in the catalytic pocket, and Ile762 and Asp763 interacted with the branched chain of the pentasaccharide. These findings suggest that RmGH13_47A is an α-amylase that prefers α-1,6-branched parts of starch to produce oligosaccharides.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Rhodothermus , alfa-Amilases , Rhodothermus/enzimologia , Rhodothermus/genética , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Amilases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Glucanos/metabolismo , Glucanos/química , Especificidade por Substrato , Amido/metabolismo , Amido/química , Sequência de Aminoácidos , Oligossacarídeos/metabolismo , Oligossacarídeos/química , Domínio Catalítico , Ligação Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Domínios e Motivos de Interação entre Proteínas , Cristalografia por Raios X , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Clonagem Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Sítios de Ligação , Conformação Proteica em alfa-Hélice , Maltose/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA