Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38432457

RESUMO

Male Japanese quails (Coturnix japonica) have been found to exhibit a three-phase metabolic change when subjected to prolonged fasting, during which basal thermogenesis is significantly reduced. A study had shown that there is a significant difference in the body temperature between male and female Japanese quails. However, whether female Japanese quails also show the same characteristic three-phase metabolic change during prolonged fasting and the underlying thermogenesis mechanisms associated with such changes are still unclear. In this study, female Japanese quails were subjected to prolonged starvation, and the body mass, basal metabolic rate (BMR), body temperature, mass of tissues and organs, body fat content, the state-4 respiration (S4R) and cytochrome c oxidase (CCO) activity in the muscle and liver of these birds were measured to determine the status of metabolic changes triggered by the starvation. In addition, the levels of glucose, triglyceride (TG) and uric acid, and thyroid hormones (T3 and T4) in the serum and the mRNA levels of myostatin (MSTN) and avian uncoupling protein (av-UCP) in the muscle were also measured. The results revealed the existence of a three-phase stage similar to that found in male Japanese quails undergoing prolonged starvation. Fasting resulted in significantly lower body mass, BMR, body temperature, tissues masses and most organs masses, as well as S4R and CCO activity in the muscle and liver. The mRNA level of av-UCP decreased during fasting, while that of MSTN increased but only during Phase I and II and decreased significantly during Phase III. Fasting also significantly lowered the T3 level and the ratio of T3/T4 in the serum. These results indicated that female Japanese quails showed an adaptive response in basal thermogenesis at multiple hierarchical levels, from organismal to biochemical, enzyme and cellular level, gene and endocrine levels and this integrated adjustment could be a part of the adaptation used by female quails to survive long-term fasting.


Assuntos
Coturnix , Codorniz , Feminino , Masculino , Animais , Coturnix/metabolismo , Codorniz/metabolismo , Jejum/metabolismo , Termogênese , RNA Mensageiro/genética
2.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36004672

RESUMO

For small birds to survive during seasonal acclimatization in temperate zones, regulation of body mass and thermogenesis is crucial. To determine the role of temperature and photoperiod in seasonal changes in body mass and thermogenesis in Chinese hwameis (Garrulax canorus), we compared body mass, basal metabolic rate (BMR), energy intake and cellular metabolic capacity of the tissue (muscle) and/or organs (liver, kidney, heart and small intestine) in seasonally acclimatized and laboratory-acclimated hwameis. A significant seasonal influence on body mass and BMR (which peaked in winter) was found, and these variations were mirrored by exposing the housed birds to cold temperatures or a short photoperiod. The level of dry matter intake, gross energy intake and digestible energy intake was higher during winter, and in housed animals that were exposed to cold temperatures. These results suggest that by increasing energy intake and thermogenesis, Chinese hwameis can overcome winter thermoregulatory challenges. When compared with warm-acclimated birds, cold-acclimated birds displayed higher mass-specific and whole-organ state 4 respiration in the muscle, liver and kidney, and higher mass-specific and whole-organ cytochrome c oxidase activity in the liver. These data demonstrate that cellular thermogenesis partly underpins basal thermoregulation in Chinese hwameis. Cold temperature and short photoperiod can be used as helpful environmental cues during seasonal acclimatization. However, the role of temperature is more significant compared with that of photoperiod in Chinese hwameis; the changes in energy metabolism and thermoregulation induced by temperature appear to be intensified by photoperiod.


Assuntos
Passeriformes , Fotoperíodo , Aclimatação/fisiologia , Animais , Metabolismo Basal/fisiologia , Regulação da Temperatura Corporal , Peso Corporal/fisiologia , China , Metabolismo Energético , Passeriformes/fisiologia , Estações do Ano , Temperatura , Termogênese/fisiologia
3.
Environ Sci Technol ; 56(8): 4970-4979, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35363472

RESUMO

Invasive sea lampreys in the Laurentian Great Lakes are controlled by applying TFM (3-trifluoromethyl-4-nitrophenol) and niclosamide to streams infested with their larvae. Both agents uncouple oxidative phosphorylation in the mitochondria, but TFM specifically targets lampreys, which have a lower capacity to detoxify the lampricide. Niclosamide lacks specificity and is more potent than TFM. However, its greater potency is poorly understood. We tested the hypothesis that niclosamide is a stronger uncoupler of mitochondrial oxidative phosphorylation than TFM by measuring oxygen consumption rates in isolated liver mitochondria exposed to physiologically relevant concentrations of TFM, niclosamide, or their mixture (100 TFM:1 niclosamide) at environmentally relevant temperatures (7, 13, and 25 °C). Niclosamide increased State 4 respiration and decreased the respiratory control ratio (RCR) at much lower concentrations than TFM. Calculations of the relative EC50 values, the amount of TFM or niclosamide required to decrease the RCR by 50%, indicated that niclosamide was 40-60 times more potent than TFM. Warmer temperature did not appear to decrease the sensitivity of mitochondria to niclosamide or TFM, as observed in the intact sea lamprey exposed to TFM in warmer waters. We conclude that the extreme sensitivity of mitochondria to niclosamide contributes to its greater in vivo toxicity in the whole animal.


Assuntos
Petromyzon , Animais , Substâncias Perigosas , Lagos , Mitocôndrias , Niclosamida/farmacologia , Respiração
4.
Artigo em Inglês | MEDLINE | ID: mdl-35124186

RESUMO

Basal metabolic rate (BMR) has been shown to be a highly phenotypic flexibility trait within species. A significant proportion of an individual's energy budget is accounted for by BMR, hence among-individual variation in this trait may affect other energetic processes, as well as fitness. In this study, we measured BMR, organ mass, mitochondrial respiration capacities and cytochrome c oxidase (COX) activities in muscle and liver and circulating levels of plasma triiodothyronine (T3) in Chinese bulbuls (Pycnonotus sinensis) and Eurasian tree sparrows (Passer montanus). Our results showed that heart and kidney mass was positively correlated with BMR in Chinese bulbuls, whereas liver and kidney mass was positively correlated with BMR in Eurasian tree sparrows. Regarding metabolic biochemical markers of tissues, state 4 respiration and COX activity in the muscles of the Chinese bulbuls was correlated with BMR, while state 4 respiration in the muscle and liver was correlated with BMR in Eurasian tree sparrows. T3 was significantly and positively correlated with BMR in Chinese bulbuls and Eurasian tree sparrows. Consistent with the above results, our findings suggest that T3 levels play an important role in modulating BMR in Chinese bulbuls and Eurasian tree sparrows. Moreover, individual variation in BMR can be explained partly by morphological and physiological mechanisms.


Assuntos
Metabolismo Basal , Pardais , Animais , Fígado , Músculos , Tri-Iodotironina
5.
J Exp Biol ; 220(Pt 5): 844-855, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082615

RESUMO

Seasonal changes in temperature and photoperiod are important environmental cues used by small birds to adjust their body mass (Mb) and thermogenesis. However, the relative importance of these cues with respect to seasonal adjustments in Mb and thermogenesis is difficult to distinguish. In particular, the effects of temperature and photoperiod on energy metabolism and thermoregulation are not well known in many passerines. To address this problem, we measured the effects of temperature and photoperiod on Mb, energy intake, resting metabolic rate (RMR), organ mass and physiological and biochemical markers of metabolic activity in the Chinese bulbul (Pycnonotus sinensis). Groups of Chinese bulbuls were acclimated in a laboratory to the following conditions: (1) warm and long photoperiod, (2) warm and short photoperiod, (3) cold and long photoperiod, and (4) cold and short photoperiod, for 4 weeks. The results indicate that Chinese bulbuls exhibit adaptive physiological regulation when exposed to different temperatures and photoperiods. Mb, RMR, gross energy intake and digestible energy intake were higher in cold-acclimated than in warm-acclimated bulbuls, and in the short photoperiod than in the long photoperiod. The resultant flexibility in energy intake and RMR allows Chinese bulbuls exposed to different temperatures and photoperiods to adjust their energy balance and thermogenesis accordingly. Cold-acclimated birds had heightened state-4 respiration and cytochrome c oxidase activity in their liver and muscle tissue compared with warm-acclimated birds indicating the cellular mechanisms underlying their adaptive thermogenesis. Temperature appears to be a primary cue for adjusting energy budget and thermogenic ability in Chinese bulbuls; photoperiod appears to intensify temperature-induced changes in energy metabolism and thermoregulation.


Assuntos
Regulação da Temperatura Corporal , Passeriformes/fisiologia , Fotoperíodo , Aclimatação , Animais , Proteínas Aviárias/metabolismo , Metabolismo Basal , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ingestão de Energia , Mitocôndrias/metabolismo , Tamanho do Órgão , Temperatura
6.
J Bioenerg Biomembr ; 48(1): 67-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26739597

RESUMO

The opening of mitochondrial K(+) АТР-channel (mtK(+) АТР-channel) is supposed to be important in the modulation of mitochondrial functions under hypoxia, but the underlying mechanisms have not been clarified yet. The aim of this work was to study the effect of acute hypoxia on mtK(+) АТР-channel activity and to estimate the contribution of the channel in the modulation of mitochondrial functions. MtK(+) АТР-channel activity was assessed polarographically from the rate of State 4 respiration and by potentiometric monitoring of potassium efflux from deenergized mitochondria. It was shown that hypoxia reliably increased mtK(+) АТР-channel activity, which resulted in the changes of respiration rates (increase of State 4 and suppression of State 3 respiration), uncoupling (the decrease of respiratory control ratio) and suppression of phosphorylation. These effects were well mimicked by mtK(+) АТР-channel opener diazoxide (DZ) in isolated rat liver mitochondria. MtK(+) АТР-channel opening in vitro suppressed phosphorylation too, but increased phosphorylation efficiency, while mtK(+) АТР-channel blockers reduced it dramatically. The correlation was established between mtK(+) АТР-channel activity and the endurance of the rats to physical training under hypoxia. Hypoxia improved physical endurance, but treatment by mtK(+) АТР-channel blockers glibenklamide and 5-hydroxydecanoate (5-HD) prior to hypoxia strongly reduced both the channel activity and the endurance limits. This was in accord with the observation that under glibenklamide and 5-HD administration hypoxia failed to restore mtK(+) АТР-channel activity. Based on the experiments, we came to the conclusion that mtK(+) АТР-channel opening played a decisive role in the regulation of energy metabolism under acute hypoxia via the modulation of phosphorylation system in mitochondria.


Assuntos
Trifosfato de Adenosina/metabolismo , Hipóxia/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Consumo de Oxigênio , Potássio/metabolismo , Doença Aguda , Animais , Hipóxia/patologia , Transporte de Íons , Masculino , Mitocôndrias Hepáticas/patologia , Ratos , Ratos Endogâmicos WKY
7.
Am J Physiol Regul Integr Comp Physiol ; 310(4): R330-6, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26661097

RESUMO

Cold acclimation in birds involves a comprehensive array of physiological and morphological adjustment ranging from changes in aerobic enzyme activity to metabolic rate and organ mass. In the present study, we investigated phenotypic variation in thermogenic activity in the hwamei (Garrulax canorus) under normal (35°C) or cold (15°C) ambient temperature conditions. Acclimation to an ambient temperature of 15°C for 4 wk significantly increased the body mass, basal metabolic rate (BMR), and energy intake, including both gross energy intake and digestible energy intake, compared with birds kept at 35°C. Furthermore, birds acclimated to 15°C increased the dry mass of their liver and kidneys, but not their heart and pectoral muscles, and displayed higher state-4 respiration in the liver, kidneys, heart, and pectoral muscles, and higher cytochrome-c oxidase (COX) activity in liver, kidney, and pectoral muscle, compared with those kept at 35°C. There was a positive correlation between BMR and state-4 respiration in all of the above organs except the liver, and between BMR and COX activity in all of the above organs. Taken together, these data illustrate the morphological, physiological, and enzymatic changes associated with cold acclimation, and support the notion that the hwamei is a bird species from temperate climates that exhibits high phenotypic flexibility of thermogenic capacity.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Passeriformes/fisiologia , Termogênese/fisiologia , Animais , Metabolismo Basal/fisiologia , Peso Corporal/fisiologia , Digestão/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ingestão de Energia , Tamanho do Órgão/fisiologia , Consumo de Oxigênio/fisiologia , Fenótipo
8.
Zool Stud ; 58: e6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31966307

RESUMO

Many small birds living in regions with seasonal fluctuations and ambient temperatures typically respond to cold by increasing metabolic thermogenesis, internal organ mass and the oxidative capacity of certain tissues. In this study, we investigated seasonal adjustments in body mass, resting metabolic rate (RMR), evaporative water loss (EWL), the mass of selected internal organs, and two indicators of cellular aerobic respiration (mitochondrial state-4 respiration and cytochrome c oxidase activity) in Chinese hwamei (Garrulax canorus) that had been captured in summer or winter from Wenzhou, China. RMR and EWL were higher in winter than in summer. State-4 respiration in the heart, liver, kidneys and pectoral muscle, as well as cytochrome c oxidase activity in the liver, kidneys and pectoral muscle were also higher in winter than summer. In addition, there was a positive correlation between RMR and EWL, and between RMR and indicators of cellular metabolic activity in the heart, liver, kidneys and pectoral muscle. This phenotypic flexibility in physiological and biochemical thermoregulatory responses may be important to the hwamei's ability to survive the unpredictable, periodic, cold temperatures commonly experienced in Wenzhou in winter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA