Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Mol Cell ; 70(4): 679-694.e7, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775582

RESUMO

Enhancers are thought to activate transcription by physically contacting promoters via looping. However, direct assays demonstrating these contacts are required to mechanistically verify such cellular determinants of enhancer function. Here, we present versatile cell-free assays to further determine the role of enhancer-promoter contacts (EPCs). We demonstrate that EPC is linked to mutually stimulatory transcription at the enhancer and promoter in vitro. SRC-3 was identified as a critical looping determinant for the estradiol-(E2)-regulated GREB1 locus. Surprisingly, the GREB1 enhancer and promoter contact two internal gene body SRC-3 binding sites, GBS1 and GBS2, which stimulate their transcription. Utilizing time-course 3C assays, we uncovered SRC-3-dependent dynamic chromatin interactions involving the enhancer, promoter, GBS1, and GBS2. Collectively, these data suggest that the enhancer and promoter remain "poised" for transcription via their contacts with GBS1 and GBS2. Upon E2 induction, GBS1 and GBS2 disengage from the enhancer, allowing direct EPC for active transcription.


Assuntos
Neoplasias da Mama/genética , Cromatina/metabolismo , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica , Coativador 3 de Receptor Nuclear/metabolismo , Transcrição Gênica , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cromatina/genética , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Coativador 3 de Receptor Nuclear/genética , Regiões Promotoras Genéticas , Ligação Proteica , Células Tumorais Cultivadas
2.
Proc Natl Acad Sci U S A ; 120(23): e2221707120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253006

RESUMO

Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Coativador 3 de Receptor Nuclear , Animais , Feminino , Masculino , Camundongos , Ligantes , Camundongos Knockout , Coativador 3 de Receptor Nuclear/genética , Linfócitos T Reguladores , Tamoxifeno/farmacologia
3.
J Mol Cell Cardiol ; 194: 70-84, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969334

RESUMO

We recently discovered that steroid receptor coactivators (SRCs) SRCs-1, 2 and 3, are abundantly expressed in cardiac fibroblasts (CFs) and their activation with the SRC small molecule stimulator MCB-613 improves cardiac function and dramatically lowers pro-fibrotic signaling in CFs post-myocardial infarction. These findings suggest that CF-derived SRC activation could be beneficial in the mitigation of chronic heart failure after ischemic insult. However, the cardioprotective mechanisms by which CFs contribute to cardiac pathological remodeling are unclear. Here we present studies designed to identify the molecular and cellular circuitry that governs the anti-fibrotic effects of an MCB-613 derivative, MCB-613-10-1, in CFs. We performed cytokine profiling and whole transcriptome and proteome analyses of CF-derived signals in response to MCB-613-10-1. We identified the NRF2 pathway as a direct MCB-613-10-1 therapeutic target for promoting resistance to oxidative stress in CFs. We show that MCB-613-10-1 promotes cell survival of anti-fibrotic CFs exposed to oxidative stress by suppressing apoptosis. We demonstrate that an increase in HMOX1 expression contributes to CF resistance to oxidative stress-mediated apoptosis via a mechanism involving SRC co-activation of NRF2, hence reducing inflammation and fibrosis. We provide evidence that MCB-613-10-1 acts as a protectant against oxidative stress-induced mitochondrial damage. Our data reveal that SRC stimulation of the NRF2 transcriptional network promotes resistance to oxidative stress and highlights a mechanistic approach toward addressing pathologic cardiac remodeling.


Assuntos
Fibroblastos , Miocárdio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Apoptose/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fibrose , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Ratos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Camundongos
4.
J Cell Mol Med ; 28(7): e18171, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506084

RESUMO

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
5.
FASEB J ; 37(12): e23313, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962238

RESUMO

Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.


Assuntos
Implantação do Embrião , Útero , Animais , Feminino , Humanos , Camundongos , Gravidez , Implantação do Embrião/genética , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Útero/metabolismo
6.
Breast Cancer Res ; 24(1): 73, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316775

RESUMO

BACKGROUND: The tumor immune microenvironment (TIME) generated by cancer-infiltrating immune cells has a crucial role in promoting or suppressing breast cancer progression. However, whether the steroid receptor coactivator-3 (SRC-3) modulates TIME to progress breast cancer is unclear. Therefore, the present study evaluates whether SRC-3 generates a tumor-promoting TIME in breast tumors using a syngeneic immune-intact mouse model of breast cancer. METHODS: We employed E0771 and 4T1 breast cancer in immune-intact syngeneic female C57BL/6 and BALB/c mice, respectively. SI-2, a specific small-molecule inhibitor of SRC-3, was administered daily (2.5 mg/kg) to E0771 and 4T1 breast tumor-bearing immune-intact mice. In addition, SRC-3 knockdown (KD)-E0771 and SRC-3 KD-4T1 cells and their parental breast cancer cells were injected into their syngeneic immune-intact female mice versus immune-deficiency mice to validate that the host immune system is required for breast tumor suppression by SRC-3 KD in immune-intact mice. Furthermore, tumor-infiltrating immune cells (such as CD4+, CD8+, CD56+, and Foxp3+ cells) in E0771 and 4T1 breast cancers treated with SI-2 and in SRC-3 KD E0771 and 4T1 breast cancers were determined by immunohistochemistry. Additionally, cytokine levels in SI-2-treated and SRC-3 KD E0771 breast tumors and their control cancers were defined with a Mouse Cytokine Array. RESULTS: SRC-3 inhibition by SI-2 significantly suppressed the progression of breast cancer cells (E0771 and 4T1) into breast cancers in immune-intact syngeneic female mice. SRC-3 KD-E0771 and -4T1 breast cancer cells did not produce well-developed tumors in immune-intact syngeneic female mice compared to their parental cells, but SRC-3 KD breast cancers were well developed in immune-defective host mice. SRC-3 inhibition by SI-2 and SRC-3 KD effectively increased the numbers of cytotoxic immune cells, such as CD4+ and CD8+ T cells and CD56+ NK cells, and Interferon γ (Ifng) in breast cancers compared to vehicle. However, SI-2 treatment reduced the number of tumor-infiltrating CD4+/Foxp3+ regulatory T (Treg) cells compared to vehicle treatment. In addition, SRC-3 inhibition by SI-2 and SRC-3 KD increased C-X-C motif chemokine ligand 9 (Cxcl9) expression in breast cancer to recruit C-X-C motif chemokine receptor 3 (Cxcr3)-expressing cytotoxic immune cells into breast tumors. CONCLUSIONS: SRC-3 is a critical immunomodulator in breast cancer, generating a protumor immune microenvironment. SRC-3 inhibition by SI-2 or SRC-3 KD activates the Cxcl9/Cxcr3 axis in breast tumors and enhances the antitumor immune microenvironment to suppress breast cancer progression.


Assuntos
Neoplasias , Coativador 3 de Receptor Nuclear , Microambiente Tumoral , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Citocinas/metabolismo , Fatores de Transcrição Forkhead , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Coativador 3 de Receptor Nuclear/metabolismo
7.
Cancer Sci ; 112(2): 604-618, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33090636

RESUMO

Glioblastoma (GBM) recurrence is attributed to the presence of therapy-resistant glioblastoma stem cells. Steroid receptor coactivator-1 (SRC-1) acts as an oncogenic regulator in many human tumors. The relationship between SRC-1 and GBM has not yet been studied. Herein, we investigate the role of SRC-1 in GBM. In this study, we found that SRC-1 expression is positively correlated with grades of glioma and inversely correlated with glioma patient's prognosis. Steroid receptor coactivator-1 promotes the proliferation, migration, and tumor growth of GBM cells. Notably, SRC-1 knockdown suppresses the stemness of GBM cells. Mechanistically, long noncoding RNA X-inactive specific transcript (XIST) is regulated by SRC-1 at the posttranscriptional level and mediates the function of SRC-1 in promoting stemness-like properties of GBM. Steroid receptor coactivator-1 can promote the expression of Kruppel-like factor 4 (KLF4) through the XIST/microRNA (miR)-152 axis. Additionally, arenobufagin and bufalin, SRC small molecule inhibitors, can reduce the proliferation and stemness of GBM cells. This study reveals SRC-1 promotes the stemness of GBM by activating the long noncoding RNA XIST/miR-152/KLF4 pathway and provides novel markers for diagnosis and therapy of GBM.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/patologia , Coativador 1 de Receptor Nuclear/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
8.
Neurochem Res ; 46(7): 1830-1843, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33881662

RESUMO

Steroid receptor coactivator 1 (SRC-1) is one of the coactivators recruited by the nuclear receptors (NRs) when NRs are activated by steroid hormones, such as glucocorticoid. SRC-1 is abundant in hippocampus and hypothalamus and is also related to some major risk factors for depression, implicated by its reduced expression after stress and its effect on hypothalamus-pituitary-adrenal gland axis function. However, whether SRC-1 is involved in the formation of depression remains unclear. In this study, we firstly established chronic unpredictable stress (CUS) to induce depressive-like behaviors in mice and found that SRC-1 expression was reduced by CUS. A large number of studies have shown that neuroinflammation is associated with stress-induced depression and lipopolysaccharide (LPS) injection can lead to neuroinflammation and depressive-like behaviors in mice. Our result indicated that LPS treatment also decreased SRC-1 expression in mouse brain, implying the involvement of SRC-1 in the process of inflammation and depression. Next, we showed that the chronic unpredictable mild stress (CUMS) failed to elicit the depressive-like behaviors and dramatically promoted the expression of SRC-1 in brain of wild type mice. What's more, the SRC-1 knockout mice were more susceptible to CUMS to develop depressive-like behaviors and presented the changed expression of glucocorticoid receptor. However, SRC-1 deficiency did not affect the microglia activation induced by CUMS. Altogether, these results indicate a correlation between SRC-1 level and depressive-like behaviors, suggesting that SRC-1 might be involved in the development of depression induced by stress.


Assuntos
Depressão/metabolismo , Coativador 1 de Receptor Nuclear/deficiência , Estresse Psicológico/metabolismo , Animais , Células Cultivadas , Depressão/etiologia , Feminino , Elevação dos Membros Posteriores , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Gravidez , Estresse Psicológico/complicações
9.
Gen Comp Endocrinol ; 309: 113780, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882296

RESUMO

Understanding of the mechanisms of actions of the steroid hormone receptor (SHR)-coregulator (CoR) protein complexes in the gene regulations has revolutionized the field of molecular endocrinology and endocrine-related oncology. The discovery and characterization of steroid receptor coactivators (SRCs) and their ability to bind various transcription factors including SHRs to coordinate the regulation of multiple target genes highlights their importance as key coregulators in various cellular signaling crosstalks as well as therapeutic target for various endocrine-related disorders specifically endocrine cancers. The dynamic nature of the SHR-CoR multi-protein complexes indicate the critical role of conformational flexibilities within specific protein(s). In recent years, the importance of conformational dynamics of the SHRs in the intramolecular and intermolecular allosteric regulations mediated via their intrinsically disordered (ID) surfaces has been highlighted. In this review article, we have discussed the importance of ID conformations within the SRCs that may also be playing an important role in the formation/deformation of multi protein complexes involving SHRs and CoRs and subsequent target gene regulation.


Assuntos
Neoplasias , Receptores de Esteroides , Sistema Endócrino/metabolismo , Regulação da Expressão Gênica , Humanos , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
10.
Cell Biol Int ; 44(1): 51-61, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31038242

RESUMO

Lung cancer remains a leading cause to cancer-related death worldwide. The anti-cancer ability of microRNA-144-3p has been reported in many cancer types. This study focused on the mechanisms underlying miR-144-3p in inhibiting lung cancer. The expression levels of miR-144-3p and steroid receptor coactivator (Src) in different lung cancer cell lines and those in bronchial epithelial cells (16HBE) were compared. miR-144-3p mimic and siSrc were transfected into A549 cells. Under the conditions of transforming growth factor-ß1 (TGF-ß1). Small interfering transfection or TGF-ß1 treatment, cell invasive and adhesive abilities were analyzed by Transwell and cell adhesion assays. miR-144-3p inhibitor and siSrc were co-transfected into A549 cells and the changes in cell invasion and adhesion were detected. The activation of Src-protein kinase B-extracellular-regulated protein kinases (Src-Akt-Erk) pathway was determined using Western blot. The downregulated miR-144-3p and upregulated Src were generally detected in lung cancer cell lines and were the most significant genes in A549 cells. Both miR-144-3p overexpression and Src inhibition could obviously inhibit the invasion and adhesion abilities of A549 cells in the presence or absence of the effects of TGF-ß1. The inhibition of Src could block the promotive effects of miR-144-3p inhibitor and TGF-ß1 on cell invasion and adhesion. Furthermore, we found that miR-144-3p could negatively regulate the phosphorylation levels of Akt and Erk. Our data indicated the essential role of Src in the mechanisms underlying TGF-ß1-induced cell invasion and adhesion of lung cancer, and that miR-144-3p could effectively suppress TGF-ß1-induced aggressive lung cancer cells by regulating Src expression.

11.
Ecotoxicol Environ Saf ; 189: 109958, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31767456

RESUMO

Recently, the action of steroid receptor coactivators (SRCs) has been recognized to be an important molecular initiating event (MIE) in estrogenic adverse outcome pathways (AOPs). However, the role of SRCs in the molecular mechanisms of many highly concerned environmental estrogens remains poorly understood. In this study, the widely studied environmental estrogen, 4-n-nonylphenol (4-n-NP), was used as a typical pollutant to study SRCs recruitment in its estrogenic effects. In MCF7 cell proliferation (E-SCREEN) assay and MVLN cell assay, 4-n-NP showed significant estrogenic potency that involved an increase in estrogen receptor α (ERα), SRC1 and SRC3 transcript levels. Moreover, 4-n-NP was found to induce estrogen response element (ERE)-mediated activity via ERα in MVLN cells. To investigate the mechanism by which SRCs recruitment is induced by 4-n-NP-ERα, a coactivators recruitment assay was performed, and the results showed that 4-n-NP-ERα recruited both SRC1 and SRC3, whereas it failed to recruit SRC2. Similarly, it had no interaction with SRC2 in the ERα-SRC2 two-hybrid yeast assay. This is the first report to investigate the novel MIE of SRCs recruitment in 4-n-NP-ERα-induced estrogenicity. Overall, our results suggest that the action of 4-n-NP on estrogenic effects involves the following MIEs: the activation of ERα, the recruitment of SRC1 and SRC3, and the induction of ERE-mediated activity. The findings also provide valuable insights into the MIE associated with the different SRCs that are recruited in the adverse outcome pathways of environmental estrogens.


Assuntos
Poluentes Ambientais/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Fenóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7
12.
Proc Natl Acad Sci U S A ; 113(18): 4970-5, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27084884

RESUMO

Protein-protein interactions (PPIs) play a central role in most biological processes, and therefore represent an important class of targets for therapeutic development. However, disrupting PPIs using small-molecule inhibitors (SMIs) is challenging and often deemed as "undruggable." We developed a cell-based functional assay for high-throughput screening to identify SMIs for steroid receptor coactivator-3 (SRC-3 or AIB1), a large and mostly unstructured nuclear protein. Without any SRC-3 structural information, we identified SI-2 as a highly promising SMI for SRC-3. SI-2 meets all of the criteria of Lipinski's rule [Lipinski et al. (2001) Adv Drug Deliv Rev 46(1-3):3-26] for a drug-like molecule and has a half-life of 1 h in a pharmacokinetics study and a reasonable oral availability in mice. As a SRC-3 SMI, SI-2 can selectively reduce the transcriptional activities and the protein concentrations of SRC-3 in cells through direct physical interactions with SRC-3, and selectively induce breast cancer cell death with IC50 values in the low nanomolar range (3-20 nM), but not affect normal cell viability. Furthermore, SI-2 can significantly inhibit primary tumor growth and reduce SRC-3 protein levels in a breast cancer mouse model. In a toxicology study, SI-2 caused minimal acute cardiotoxicity based on a hERG channel blocking assay and an unappreciable chronic toxicity to major organs based on histological analyses. We believe that this work could significantly improve breast cancer treatment through the development of "first-in-class" drugs that target oncogenic coactivators.


Assuntos
Benzimidazóis/farmacologia , Hidrazonas/farmacologia , Coativador 3 de Receptor Nuclear/antagonistas & inibidores , Animais , Benzimidazóis/farmacocinética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Hidrazonas/farmacocinética , Camundongos , Coativador 3 de Receptor Nuclear/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
13.
Bioorg Med Chem Lett ; 28(3): 351-354, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29287957

RESUMO

The vitamin D receptor is a nuclear hormone receptor that regulates cell proliferation, cell differentiation and calcium homeostasis. The receptor is endogenously activated by 1,25-dihydroxyvitamin D3, which induces transcription of VDR targets genes regulated by coactivator binding. VDR antagonists and partial agonists have been developed based on the secosteroid scaffold of vitamin D. Only a few non-secosteroid VDR antagonists are known. Herein, we report the rational design of non-secosteroid VDR antagonists using GW0742 as a scaffold. GW0742 is a PPARδ agonist previously identified by our group as a VDR antagonist. Several modifications including the replacement of the thiazole ring with an oxazole ring led to compound 7b, which inhibited VDR-mediated transcription (IC50 = 660 nM) without activating PPARδ-mediated transcription. However, inhibition of transcription mediated by other nuclear receptors was observed.


Assuntos
Receptores de Calcitriol/antagonistas & inibidores , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
14.
Proc Natl Acad Sci U S A ; 112(44): E6068-77, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26487680

RESUMO

Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation.


Assuntos
Glucose/metabolismo , Homeostase/fisiologia , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Animais , Glucoquinase/genética , Glucoquinase/metabolismo , Camundongos , Camundongos Knockout , Transcrição Gênica
15.
Proc Natl Acad Sci U S A ; 111(51): 18261-6, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489091

RESUMO

The androgen receptor (AR) is a key driver of prostate cancer (PC), even in the state of castration-resistant PC (CRPC) and frequently even after treatment with second-line hormonal therapies such as abiraterone and enzalutamide. The persistence of AR activity via both ligand-dependent and ligand-independent mechanisms (including constitutively active AR splice variants) highlights the unmet need for alternative approaches to block AR signaling in CRPC. We investigated the transcription factor GATA-binding protein 2 (GATA2) as a regulator of AR signaling and an actionable therapeutic target in PC. We demonstrate that GATA2 directly promotes expression of both full-length and splice-variant AR, resulting in a strong positive correlation between GATA2 and AR expression in both PC cell lines and patient specimens. Conversely, GATA2 expression is repressed by androgen and AR, suggesting a negative feedback regulatory loop that, upon androgen deprivation, derepresses GATA2 to contribute to AR overexpression in CRPC. Simultaneously, GATA2 is necessary for optimal transcriptional activity of both full-length and splice-variant AR. GATA2 colocalizes with AR and Forkhead box protein A1 on chromatin to enhance recruitment of steroid receptor coactivators and formation of the transcriptional holocomplex. In agreement with these important functions, high GATA2 expression and transcriptional activity predicted worse clinical outcome in PC patients. A GATA2 small molecule inhibitor suppressed the expression and transcriptional function of both full-length and splice-variant AR and exerted potent anticancer activity against PC cell lines. We propose pharmacological inhibition of GATA2 as a first-in-field approach to target AR expression and function and improve outcomes in CRPC.


Assuntos
Fator de Transcrição GATA2/fisiologia , Coativadores de Receptor Nuclear/metabolismo , Receptores Androgênicos/metabolismo , Proliferação de Células , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Prognóstico , Receptores Androgênicos/fisiologia , Transdução de Sinais , Transcrição Gênica/fisiologia
16.
Arkh Patol ; 79(3): 19-26, 2017.
Artigo em Russo | MEDLINE | ID: mdl-28631712

RESUMO

AIM: to investigate the molecular mechanisms and morphological substrate of reduced uterine leiomyoma in patients receiving the selective progesterone receptor modulator (SPRM) ulipristal acetate for 3 months, by estimating the immunohistochemical expression of the markers steroid receptor coactivator 1 (SRC-1), nuclear receptor corepressor 1 (NCoR-1), ER, PgR, Ki-67, p16, TGF-ß, and VEGF in tumor tissue. SUBJECTS AND METHODS: The investigation enrolled 75 women with uterine leiomyoma, menorrhagias, and anemia. Group 1 included 40 patients who were treated with ulipristal for 3 months, followed by laparoscopic myomectomy. Group 2 consisted of 35 patients who underwent surgery without previous preparation. The intra- and postoperative parameters and molecular and morphological changes in the myomatous nodules were comparatively analyzed in both groups. RESULTS: After 3 months of therapy initiation, menorrhagia completely ceased, myomatous nodules decreased in size (p<0.05), hemoglobin levels were elevated (p<0.01), and total intraoperative blood loss and operative time decreased in all the patients in Group 1. The morphological substrate of partial leiomyoma reduction was leiomyocyte apoptosis and dystrophy, tumor stroma sclerosis and hyalinosis with diminished Ki-67 expression and elevated p16 in the smooth muscle cells, trophic nodular tissue disorders exhibited by vascular wall sclerosis and lower VEGF and TGF-ß expression, and leiomyocyte hormonal reception dysregulation that made itself evident through the reduced expression of SRC-1 with the unchanged expression of PR and ER and the maintained level of NCoR-1. CONCLUSION: The molecular mechanisms of tumor reduction involved the reduced Ki-67 expression and elevated p16, lower VEGF and TGF-ß, diminished SRC-1 expression with the maintained level of PR, ER, and NCoR-1. Overall, this is suggestive of enhanced apoptosis and reduced leiomyoma proliferation and angiogenesis induced by SPRM and indicative of the expediency of using ulipristal acetate as a preoperative agent for organ-sparing surgery in reproductive-aged patients with uterine myoma, menorrhagias, and anemia.


Assuntos
Biomarcadores Tumorais/metabolismo , Leiomioma/tratamento farmacológico , Norpregnadienos/uso terapêutico , Receptores de Progesterona/metabolismo , Neoplasias Uterinas/tratamento farmacológico , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Leiomioma/metabolismo , Leiomioma/patologia , Norpregnadienos/administração & dosagem , Resultado do Tratamento , Miomectomia Uterina , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
17.
J Biol Chem ; 290(30): 18596-608, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26082485

RESUMO

Steroid receptor coactivator 1 (SRC-1) is a transcriptional coactivator not only for steroid receptors, such as androgen receptor and estrogen receptor, but also for other transcription factors. SRC-1 has been shown to play an important role in the progression of breast cancer and prostate cancer. However, its role in liver cancer progression remains unknown. In this study, we report that SRC-1 was overexpressed in 25 (62.5%) of 40 human hepatocellular carcinoma (HCC) specimens. Down-regulation of SRC-1 decreased HCC cell proliferation and impaired tumor maintenance in HCC xenografts. Knockdown of SRC-1 reduced protein levels of the proliferation marker proliferating cell nuclear antigen (PCNA) and the oncogene c-Myc. Knockout of SRC-1 in mice reduced diethylnitrosamine/CCl4-induced tumor formation in the liver and the expression of c-Myc and PCNA in liver tumors. SRC-1 promoted c-Myc expression, at least in part, by directly interacting with ß-catenin to enhance Wnt/ß-catenin signaling. Consistent with these results, the expression of SRC-1 was positively correlated with PCNA expression in human HCC specimens, and the expression levels of c-Myc in SRC-1-positive HCC specimens were higher than in SRC-1-negative HCC specimens. In addition, SRC-1 and SRC-3 were co-overexpressed in 47.5% of HCC specimens, and they cooperated to promote HCC cell proliferation. Simultaneous down-regulation of SRC-1 and SRC-3 dramatically inhibited HCC cell proliferation. Our results demonstrate that SRC-1 promotes HCC progression by enhancing Wnt/ß-catenin signaling and suggest that SRC-1 is a potential therapeutic molecular target for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Coativador 1 de Receptor Nuclear/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Via de Sinalização Wnt/genética , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Coativador 1 de Receptor Nuclear/biossíntese , Coativador 3 de Receptor Nuclear/biossíntese , Coativador 3 de Receptor Nuclear/metabolismo , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
18.
Gen Comp Endocrinol ; 225: 55-60, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26363452

RESUMO

Green anoles are seasonally breeding lizards in which male sexual behavior is primarily regulated by an annual increase in testosterone. This hormone activates stereotyped behaviors, as well as morphological and biochemical changes in the brain, with greater effect in the breeding season than in the non-breeding season. This study is the first description of CREB binding protein (CBP) in the reptilian brain, and investigates the possibility that changes in CBP, an androgen receptor coactivator, may facilitate differences in responsiveness to testosterone across seasons. A portion of this gene was cloned for the green anole, and in situ hybridization was performed to examine the expression of CBP in the brains of gonadally intact male and female green anoles across breeding states. Additionally, hormonal regulation of CBP was evaluated across sex and season in animals that were gonadectomized and treated with testosterone or a control. Similar to other vertebrates, CBP was expressed at relatively high levels in steroid-sensitive brain regions. In the anole ventromedial amygdala, CBP mRNA levels were nearly twice as high in gonadally intact females compared to males. In contrast, CBP expression did not differ across seasons or hormone manipulation in this brain region. No significant effects were detected in the preoptic area or ventromedial hypothalamus. This pattern suggests that CBP might influence female-biased functions controlled by the ventromedial amygdala, but is not consistent with a role in mediating seasonal differences in responsiveness to testosterone in these areas associated with reproductive function.


Assuntos
Tonsila do Cerebelo/metabolismo , Proteína de Ligação a CREB/metabolismo , Hipotálamo/metabolismo , Lagartos/fisiologia , Área Pré-Óptica/metabolismo , Caracteres Sexuais , Animais , Proteína de Ligação a CREB/genética , Feminino , Hibridização In Situ , Masculino , RNA Mensageiro/genética , Estações do Ano , Comportamento Sexual , Comportamento Sexual Animal/fisiologia , Testosterona/metabolismo
19.
Biochem Biophys Res Commun ; 443(2): 458-63, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333426

RESUMO

The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex is unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of ß-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, ß-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the ß-estradiol stimulated genes. Ingenuity Pathway Analysis of ß-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast cancer patients would benefit from a strategy to therapeutic disengage ER/4ICD coregulated tumor cell proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Receptores ErbB/metabolismo , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Humanos , Células MCF-7 , Receptor ErbB-4
20.
Biol Reprod ; 90(4): 75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24571987

RESUMO

Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)-a member of the p160/SRC family of coregulators-in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2(flox/flox) (SRC-2(f/f) [control]) and PR(cre/+)/SRC-2(flox/flox) (SRC-2(d/d) [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Decídua/citologia , Coativador 2 de Receptor Nuclear/genética , Células Estromais/citologia , Animais , Decídua/fisiologia , Feminino , Humanos , Camundongos , Camundongos Mutantes , Coativador 2 de Receptor Nuclear/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Progesterona/metabolismo , RNA Interferente Pequeno/genética , Células Estromais/fisiologia , Transcrição Gênica/fisiologia , Transcriptoma/fisiologia , Útero/citologia , Útero/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA