Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Math Biosci Eng ; 16(6): 6769-6793, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31698587

RESUMO

Alattice-indexed familyof stochasticprocesses hasquasi-cycle oscillationsif itsotherwise-damped oscillations are sustained by noise. Such a family performs the reaction part of a discrete stochastic reaction-diffusion system when we insert a local Mexican Hat-type, difference of Gaussians, coupling on a one-dimensional and on a two-dimensional lattice. Quasi-cycles are a proposed mech-anism for the production of neural oscillations, and Mexican Hat coupling is ubiquitous in the brain. Thus this combination might provide insight into the function of neural oscillations in the brain. Im-portantly, we study this system only in the transient case, on time intervals before saturation occurs. In one dimension, for weak coupling, we find that the phases of the coupled quasi-cycles synchronize (es-tablish a relatively constant relationship, or phase lock) rapidly at coupling strengths lower than those required to produce spatial patterns of their amplitudes. In two dimensions the amplitude patterns form more quickly, but there remain parameter regimes in which phase synchronization patterns form with-out being accompanied by clear amplitude patterns. At higher coupling strengths we find patterns both of phase synchronization and of amplitude (resembling Turing patterns) corresponding to the patterns of phase synchronization. Specific properties of these patterns are controlled by the parameters of the reaction and of the Mexican Hat coupling.

2.
J Math Neurosci ; 6(1): 3, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26936267

RESUMO

The original neural field model of Wilson and Cowan is often interpreted as the averaged behaviour of a network of switch like neural elements with a distribution of switch thresholds, giving rise to the classic sigmoidal population firing-rate function so prevalent in large scale neuronal modelling. In this paper we explore the effects of such threshold noise without recourse to averaging and show that spatial correlations can have a strong effect on the behaviour of waves and patterns in continuum models. Moreover, for a prescribed spatial covariance function we explore the differences in behaviour that can emerge when the underlying stationary distribution is changed from Gaussian to non-Gaussian. For travelling front solutions, in a system with exponentially decaying spatial interactions, we make use of an interface approach to calculate the instantaneous wave speed analytically as a series expansion in the noise strength. From this we find that, for weak noise, the spatially averaged speed depends only on the choice of covariance function and not on the shape of the stationary distribution. For a system with a Mexican-hat spatial connectivity we further find that noise can induce localised bump solutions, and using an interface stability argument show that there can be multiple stable solution branches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA