Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ann Hematol ; 103(1): 185-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37851072

RESUMO

Antibodies targeting PD-1 or 4-1BB achieve objective responses in follicular lymphoma (FL), but only in a minority of patients. We hypothesized that targeting multiple immune receptors could overcome immune resistance and increase response rates in patients with relapsed/refractory FL. We therefore conducted a phase 1b trial testing time-limited therapy with different immunotherapy doublets targeting 4-1BB (utomilumab), OX-40 (ivuxolimab), and PD-L1 (avelumab) in combination with rituximab among patients with relapsed/refractory grade 1-3A FL. Patients were enrolled onto 2 of 3 planned cohorts (cohort 1 - rituximab/utomilumab/avelumab; cohort 2 - rituximab/ivuxolimab/utomilumab). 3+3 dose escalation was followed by dose expansion at the recommended phase 2 dose (RP2D). Twenty-four patients were enrolled (16 in cohort 1 and 9 in cohort 2, with one treated in both cohorts). No patients discontinued treatment due to adverse events and the RP2D was the highest dose level tested in both cohorts. In cohort 1, the objective and complete response rates were 44% and 19%, respectively (50% and 30%, respectively, at RP2D). In cohort 2, no responses were observed. The median progression-free survivals in cohorts 1 and 2 were 6.9 and 3.2 months, respectively. In cohort 1, higher density of PD-1+ tumor-infiltrating T-cells on baseline biopsies and lower density of 4-1BB+ and TIGIT+ T-cells in on-treatment biopsies were associated with response. Abundance of Akkermansia in stool samples was also associated with response. Our results support a possible role for 4-1BB agonist therapy in FL and suggest that features of the tumor microenvironment and stool microbiome may be associated with clinical outcomes (NCT03636503).


Assuntos
Antineoplásicos , Linfoma Folicular , Humanos , Rituximab , Linfoma Folicular/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Imunoterapia , Microambiente Tumoral
2.
Allergy ; 78(6): 1595-1604, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36635218

RESUMO

BACKGROUND: The microbiome associations of food protein-induced enterocolitis syndrome (FPIES) are understudied. We sought to prospectively define the clinical features of FPIES in a birth cohort, and investigate for the evidence of gut dysbiosis. METHODS: We identified children diagnosed with FPIES in the Gastrointestinal Microbiome and Allergic Proctocolitis Study, a healthy infant cohort. Children were assessed and stools were collected at each well child visit. The clinical features of the children with FPIES were summarized. Stool microbiome was analyzed using 16S rRNA sequencing comparing children with and without FPIES. RESULTS: Of the 874 children followed up for 3 years, 8 FPIES cases (4 male) were identified, yielding a cumulative incidence of 0.92%. The most common triggers were oat and rice (n = 3, each) followed by milk (n = 2). The children with FPIES were more likely to have family history of food allergy (50% vs. 15.9% among unaffected, p = .03). The average age of disease presentation was 6 months old. During the first 6 months of life, stool from children with FPIES contained significantly less Bifidobacterium adolescentis, but more pathobionts, including Bacteroides spp. (especially Bacteroides fragilis), Holdemania spp., Lachnobacterium spp., and Acinetobacter lwoffii. The short-chain fatty acid (SCFA)-producing Bifidobacterium shunt was expressed significantly less in the stool from FPIES children. CONCLUSIONS: In this cohort, the cumulative incidence over the 3-year study period was 0.92%. During the first 6 months of life, children with FPIES had evidence of dysbiosis and SCFA production pathway was expressed less in their stool, which may play an important role in the pathogenesis of FPIES.


Assuntos
Enterocolite , Hipersensibilidade Alimentar , Criança , Humanos , Lactente , Masculino , Estudos Prospectivos , Disbiose , RNA Ribossômico 16S/genética , Proteínas Alimentares/efeitos adversos , Síndrome , Hipersensibilidade Alimentar/diagnóstico , Enterocolite/epidemiologia , Enterocolite/etiologia , Enterocolite/diagnóstico , Alérgenos
3.
Dig Dis Sci ; 67(1): 224-232, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534012

RESUMO

BACKGROUND: Proton pump inhibitor (PPI) use is extremely common. PPIs have been suggested to affect the gut microbiome, and increase risks of Clostridium difficile infection and small intestinal bacterial overgrowth (SIBO). However, existing data are based on stool analyses and PPIs act on the foregut. AIMS: To compare the duodenal and stool microbiomes in PPI and non-PPI users. METHODS: Consecutive subjects presenting for upper endoscopy without colonoscopy were recruited. Current antibiotic users were excluded. Subjects taking PPI were age- and gender-matched 1:2 to non-PPI controls. Subjects completed medical history questionnaires, and duodenal aspirates were collected using a validated protected catheter. A subset also provided stool samples. Duodenal and stool microbiomes were analyzed by 16S rRNA sequencing. RESULTS: The duodenal microbiome exhibited no phylum-level differences between PPI (N = 59) and non-PPI subjects (N = 118), but demonstrated significantly higher relative abundances of families Campylobacteraceae (3.13-fold, FDR P value < 0.01) and Bifidobacteriaceae (2.9-fold, FDR P value < 0.01), and lower relative abundance of Clostridiaceae (88.24-fold, FDR P value < 0.0001), in PPI subjects. SIBO rates were not significantly different between groups, whether defined by culture (> 103 CFU/ml) or 16S sequencing, nor between subjects taking different PPIs. The stool microbiome exhibited significantly higher abundance of family Streptococcaceae (2.14-fold, P = 0.003), and lower Clostridiaceae (2.60-fold, FDR P value = 8.61E-13), in PPI (N = 22) versus non-PPI (N = 47) subjects. CONCLUSIONS: These findings suggest that PPI use is not associated with higher rates of SIBO. Relative abundance of Clostridiaceae was reduced in both the duodenal and stool microbiomes, and Streptococcaceae was increased in stool. The clinical implications of these findings are unknown.


Assuntos
Síndrome da Alça Cega , Infecções por Clostridium , Duodeno , Fezes/microbiologia , Intestino Delgado/microbiologia , Inibidores da Bomba de Prótons , Biópsia por Agulha/métodos , Síndrome da Alça Cega/diagnóstico , Síndrome da Alça Cega/epidemiologia , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/epidemiologia , Duodeno/efeitos dos fármacos , Duodeno/microbiologia , Duodeno/patologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Resultados Negativos , Inibidores da Bomba de Prótons/administração & dosagem , Inibidores da Bomba de Prótons/efeitos adversos , Fatores de Risco , Estados Unidos/epidemiologia
4.
Cell Host Microbe ; 32(4): 506-526.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479397

RESUMO

To understand the dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune, and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that microbiome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. We identify individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggesting systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals show altered microbial stability and associations among microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.


Assuntos
Estabilidade Central , Microbiota , Humanos , Pele/microbiologia , Interações entre Hospedeiro e Microrganismos , Biomarcadores
5.
Microbiol Spectr ; 11(4): e0061423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338388

RESUMO

Dysbiosis of the neonatal gut microbiome during early life has been suggested as the missing link that may explain higher rates of certain diseases in caesarean section-delivered infants. Many studies report delivery mode-related dysbiosis in infants due to a lack of maternal vaginal microbiome exposure, prompting interventions to correct the neonatal gut microbiome by transferring these missing microbes after caesarean delivery. The maternal vaginal microbiome is among the first microbial exposures that many infants experience, yet little is known about the extent of direct transmission of maternal vaginal microbes. As part of the Maternal Microbiome Legacy Project, we aimed to determine if maternal vaginal bacteria are vertically transmitted to infants. We employed cpn60 microbiome profiling, culture-based screening, molecular strain typing, and whole-genome sequencing to determine whether identical maternal vaginal strains were present in infant stool microbiomes. We identified identical cpn60 sequence variants in both halves of maternal-infant dyads in 204 of 585 Canadian women and their newborn infants (38.9%). The same species of Bifidobacterium and Enterococcus were cultured from maternal and corresponding infant samples in 33 and 13 of these mother-infant dyads, respectively. Pulsed-field gel electrophoresis and whole-genome sequencing determined that near-identical strains were detected in these dyads irrespective of delivery mode, indicating an alternative source in cases of caesarean delivery. Overall, we demonstrated that vertical transmission of maternal vaginal microbiota is likely limited and that transmission from other maternal body sites, such as the gut and breast milk, may compensate for the lack of maternal vaginal microbiome exposure during caesarean delivery. IMPORTANCE The importance of the gut microbiome in human health and disease is widely recognized, and there has been a growing appreciation that alterations in gut microbiome composition during a "critical window" of development may impact health in later life. Attempts to correct gut microbiome dysbiosis related to birth mode are underpinned by the assumption that the lack of exposure to maternal vaginal microbes during caesarean delivery is responsible for dysbiosis. Here, we demonstrate that there is limited transmission of the maternal vaginal microbiome to the neonatal gut, even in cases of vaginal delivery. Furthermore, the presence of identical strains shared between mothers and infants in early life, even in cases of caesarean delivery, highlights compensatory microbial exposures and sources for the neonatal stool microbiome other than the maternal vagina.


Assuntos
Cesárea , Microbiota , Recém-Nascido , Humanos , Lactente , Feminino , Gravidez , Disbiose , Canadá , Fezes/microbiologia , Bactérias , Vagina/microbiologia
6.
JPGN Rep ; 4(3): e319, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600604

RESUMO

D-lactic acidosis (D-LA) is an uncommon complication of short bowel syndrome characterized by elevated plasma D-lactate and encephalopathy. Treatments include rehydration, dietary carbohydrate restriction, and antibiotics to alter the gut microbiota. Fecal microbiota transplantation (FMT) has recently been used in children to successfully treat D-LA. We compared the clinical course and then utilized metagenomic shotgun sequencing to describe changes in the composition and function of the intestinal microbiome following FMT in 2 patients with recurrent D-LA. FMT altered the composition of the fecal microbiota in these 2 patients with recurrent D-LA, though not necessarily in a consistent manner. Importantly, microbial metabolic pathways were also impacted by FMT, which may be critical for achieving desired clinical outcomes. While sample size limits the generalizability of our results, these findings set the stage for further understanding of the role of microbes in the pathogenesis of recurrent D-LA.

7.
Front Cell Infect Microbiol ; 13: 1257816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780855

RESUMO

Introduction: Recent studies have proposed several plausible mechanisms supporting the association between periodontal disease and systemic disease. However, characterizing the microbial communities in individuals with periodontal disease before onset of other diseases is an important first step in determining how the altered microbial state contributes to disease progression. This study established microbiome profiles for five body habitats of carefully selected, otherwise healthy individuals with periodontal disease. Methods: Blood, oral (buccal mucosa, dental plaque, and saliva), and stool samples were collected from ten healthy subjects with periodontal disease. Using 16S rRNA metagenomics, the taxonomic and functional compositions of microbiomes were investigated. Results: The most predominant phylum in blood and stool was Bacillota. Pseudomonadota accounted for the largest proportion of microbes in the buccal mucosa and saliva, whereas Bacteroidota were the most prevalent in dental plaque. Differential abundance analysis revealed that 12 phyla and 139 genera were differentially abundant between body habitats. Comparison of alpha diversity showed that the blood microbiome has the most diverse community close to neither oral nor stool microbiomes. We also predicted the functional configurations of the microbiome in otherwise healthy subjects with periodontal disease. Principal coordinate analysis based on functional abundance revealed distinct clustering of the microbial communities between different body habitats, as also observed for taxonomic abundance. In addition, 13 functional pathways, including lipopolysaccharide biosynthesis, glutathione metabolism, and proteasome, showed differential expression between habitats. Discussion: Our results offer insight into the effects of the microbiome on systemic health and disease in people with periodontal disease.


Assuntos
Placa Dentária , Microbiota , Doenças Periodontais , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma
8.
Front Cell Infect Microbiol ; 13: 1144254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065202

RESUMO

Birth mode has been implicated as a major factor influencing neonatal gut microbiome development, and it has been assumed that lack of exposure to the maternal vaginal microbiome is responsible for gut dysbiosis among caesarean-delivered infants. Consequently, practices to correct dysbiotic gut microbiomes, such as vaginal seeding, have arisen while the effect of the maternal vaginal microbiome on that of the infant gut remains unknown. We conducted a longitudinal, prospective cohort study of 621 Canadian pregnant women and their newborn infants and collected pre-delivery maternal vaginal swabs and infant stool samples at 10-days and 3-months of life. Using cpn60-based amplicon sequencing, we defined vaginal and stool microbiome profiles and evaluated the effect of maternal vaginal microbiome composition and various clinical variables on the development of the infant stool microbiome. Infant stool microbiomes showed significant differences in composition by delivery mode at 10-days postpartum; however, this effect could not be explained by maternal vaginal microbiome composition and was vastly reduced by 3 months. Vaginal microbiome clusters were distributed across infant stool clusters in proportion to their frequency in the overall maternal population, indicating independence of the two communities. Intrapartum antibiotic administration was identified as a confounder of infant stool microbiome differences and was associated with lower abundances of Escherichia coli, Bacteroides vulgatus, Bifidobacterium longum and Parabacteroides distasonis. Our findings demonstrate that maternal vaginal microbiome composition at delivery does not affect infant stool microbiome composition and development, suggesting that practices to amend infant stool microbiome composition focus factors other than maternal vaginal microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Recém-Nascido , Humanos , Lactente , Gravidez , Feminino , Microbioma Gastrointestinal/genética , Estudos Prospectivos , Canadá , Fezes/microbiologia
9.
Front Microbiol ; 13: 897283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756061

RESUMO

Gut microbiome composition is different in males and females, but sex is rarely considered when prescribing antibiotics, and sex-based differences in gut microbiome recovery following antibiotic treatment are poorly understood. Here, we compared the effects of broad-spectrum antibiotics on both the stool and small bowel microbiomes in male and female rats. Adult male and female Sprague Dawley rats were exposed to a multi-drug antibiotic cocktail for 8 days, or remained unexposed as controls. Following cessation of antibiotics, rats were monitored for an additional 13-day recovery period prior to euthanasia. Baseline stool microbiome composition was similar in males and females. By antibiotic exposure day 8 (AbxD8), exposed male rats exhibited greater loss of stool microbial diversity compared to exposed females, and the relative abundance (RA) of numerous taxa were significantly different in exposed males vs. exposed females. Specifically, RA of phylum Proteobacteria and genera Lactobacillus, Sutterella, Akkermansia, and Serratia were higher in exposed males vs. exposed females, whereas RA of phyla Firmicutes and Actinobacteria and genera Turicibacter and Enterococcus were lower. By 13 days post antibiotics cessation (PAbxD13), the stool RA of these and other taxa remained significantly different from baseline, and also remained significantly different between exposed males and exposed females. RA of phyla Firmicutes and Actinobacteria and genus Enterococcus remained lower in exposed males vs. exposed females, and genus Sutterella remained higher. However, RA of phylum Proteobacteria and genus Akkermansia were now also lower in exposed males vs. females, whereas RA of phylum Bacteroidetes and genus Turicibacter were now higher in exposed males. Further, the small bowel microbiome of exposed rats on PAbxD13 was also significantly different from unexposed controls, with higher RA of Firmicutes, Turicibacter and Parabacteroides in exposed males vs. females, and lower RA of Bacteroidetes, Proteobacteria, Actinobacteria, Oscillospira, Sutterella, and Akkermansia in exposed males vs. females. These findings indicate that broad-spectrum antibiotics have significant and sex-specific effects on gut microbial populations in both stool and the small bowel, and that the recovery of gut microbial populations following exposure to broad-spectrum antibiotics also differs between sexes. These findings may have clinical implications for the way antibiotics are prescribed.

10.
Front Cell Infect Microbiol ; 12: 910766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782152

RESUMO

Zebrafish have been used as a model organism for more than 50 years and are considered an excellent model for studying host-microbiome interactions. However, this largely depends on our understanding of the zebrafish gut microbiome itself. Despite advances in sequencing and data analysis methods, the zebrafish gut microbiome remains highly understudied. This study performed the de novo metagenome assembly and recovery of the metagenome-assembled genomes (MAGs) through genome binning (and refinement) of the contigs assembled from the zebrafish stool. The results indicate that majority of the MAGs had excellent quality i.e. high completeness (≥90%) and low contamination levels (≤5%). MAGs mainly belong to the taxa that are known to be members of the core zebrafish stool microbiome, including the phylum Proteobacteria, Fusobacteriota, and Actinobacteriota. However, most of the MAGs remained unclassified at the species level and reflected previously unexplored microbial taxa and their potential novelty. These MAGs also contained genes with predicted functions associated with diverse metabolic pathways that included carbohydrate, amino acid, and lipid metabolism pathways. Lastly, we performed a comparative analysis of Paucibacter MAGs and reference genomes that highlighted the presence of novel Paucibacter species and enriched metabolic potential in the recovered MAGs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Fezes , Microbioma Gastrointestinal/genética , Metagenoma , Peixe-Zebra
11.
Data Brief ; 37: 107175, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169125

RESUMO

The Puerto Rican parrot (Amazona vittata), endemic to Puerto Rico, is the only native parrot in the United States and is classified as a critically endangered species. There are two captive populations of A. vittata in Puerto Rico located in the Iguaca Aviary in El Yunque National Rainforest and the José L. Vivaldi Aviary in the Río Abajo Forest. To characterize the microbial communities of A. vittata's stool, 21 stool samples from captive birds were collected, DNA extracted and sequenced using Illumina MiSeq. Sequences were processed by removing host sequences (A. vittata genome) and low-quality reads. Taxonomic and functional profiles were generated using MG-RAST. The most abundant domain was Bacteria (96%), followed by Virus (3%), and Eukaryota (0.6%). Among the functions in the microbiome, the most abundant was related to carbohydrates (14%), followed by clustering-based subsystems (12%), protein metabolism (8%), and amino acids and derivatives (7%). This dataset describes the stool microbiome of A. vittata using a metagenomics approach. Data can be used to develop holistic conservation strategies for A. vittata and other endangered birds, as well as to search for bioprospects with potential biomedical and biotechnological applications.

12.
Nutrients ; 11(2)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682843

RESUMO

We investigated extreme changes in diet patterns on the gut microbiota of elite race walkers undertaking intensified training and its possible links with athlete performance. Numerous studies with sedentary subjects have shown that diet and/or exercise can exert strong selective pressures on the gut microbiota. Similar studies with elite athletes are relatively scant, despite the recognition that diet is an important contributor to sports performance. In this study, stool samples were collected from the cohort at the beginning (baseline; BL) and end (post-treatment; PT) of a three-week intensified training program during which athletes were assigned to a High Carbohydrate (HCHO), Periodised Carbohydrate (PCHO) or ketogenic Low Carbohydrate High Fat (LCHF) diet (post treatment). Microbial community profiles were determined by 16S rRNA gene amplicon sequencing. The microbiota profiles at BL could be separated into distinct "enterotypes," with either a Prevotella or Bacteroides dominated enterotype. While enterotypes were relatively stable and remained evident post treatment, the LCHF diet resulted in a greater relative abundance of Bacteroides and Dorea and a reduction of Faecalibacterium. Significant negative correlations were observed between Bacteroides and fat oxidation and between Dorea and economy test following LCHF intervention.


Assuntos
Dieta com Restrição de Carboidratos , Dieta Hiperlipídica , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Caminhada/fisiologia , Adulto , Atletas , Humanos , Análise de Componente Principal , Adulto Jovem
13.
Healthcare (Basel) ; 7(1)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813360

RESUMO

Helicobacter pylori is a bacterium that selectively infects the gastric epithelium of half of the world population. The microbiome, community of microorganisms gained major interest over the last years, due to its modification associated to health and disease states. Even if most of these descriptions have focused on chronic disorders, this review describes the impact of the intestinal bacterial microbiome on host response to Helicobacter associated diseases. Microbiome has a direct impact on host cells, major barrier of the gastro-intestinal tract, but also an indirect impact on immune system stimulation, by enhancing or decreasing non-specific or adaptive response. In microbial infections, especially in precancerous lesions induced by Helicobacter pylori infection, these modifications could lead to different outcome. Associated to data focusing on the microbiome, transcriptomic analyses of the eukaryote response would lead to a complete understanding of these complex interactions and will allow to characterize innovative biomarkers and personalized therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA