Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514889

RESUMO

Space situational awareness (SSA) refers to collecting, analyzing, and keeping track of detailed knowledge of resident space objects (RSOs) in the space environment. With the rapidly increasing number of objects in space, the need for SSA grows as well. Traditional methods rely heavily on imaging RSOs from large, narrow field-of-view (FOV), ground-based telescopes. This research outlines the technology demonstration payload, Resident Space Object Near-space Astrometric Research (RSONAR)-a star tracker-like, wide FOV camera combined with commercial off-the-shelf (COTS) hardware to image RSOs from the stratosphere, overcoming the disadvantages of ground-based observations. The hardware components and software algorithm are described and evaluated. The eligibility of the payload for SSA is proven by the image processing algorithms, which detect the RSOs in the images captured during flight and the survival of the COTS components in the near-space environment. The payload features a low-resolution, wide FOV camera coupled with a Field Programmable Gate Array (FPGA)-based platform that houses the altitude and time-based image capture algorithm. The newly developed payload in a 2U-CubeSat form factor was flown as a space-ready payload on the CSA/CNES stratospheric balloon research platform to carry out algorithm and functionality tests in August 2022.

2.
Sensors (Basel) ; 24(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202933

RESUMO

Space systems play an integral role in every facet of our daily lives, including national security, communications, and resource management. Therefore, it is critical to protect our valuable assets in space and build resiliency in the space environment. In recent years, we have developed a novel approach to Space Situational Awareness (SSA), in the form of a low-resolution, Wide Field-of-View (WFOV) camera payload for attitude determination and Resident Space Object (RSO) detection. Detection is the first step in tracking, identification, and characterization of RSOs, including natural and artificial objects orbiting the Earth. A space-based dual-purpose camera that can provide attitude information alongside RSO detection can enhance the current SSA technologies which rely on ground infrastructure. A CubeSat form factor payload with real-time attitude determination and RSO detection algorithms was developed and flown onboard the CSA/CNES stratospheric balloon platform in August 2023. Sub-degree pointing information and multiple RSO detections were demonstrated during operation, with opportunities for improvement discussed. This paper outlines the hardware and software architecture, system design methodology, on-ground testing, and in-flight results of the dual-purpose camera payload.

3.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35898078

RESUMO

This paper shows wind speed measurements from the TASEC-Lab experiment in a stratospheric balloon mission. The mission was launched in July 2021 from León (Spain) aerodrome. Measurements of horizontal wind speed in relation to the balloon gondola were successfully carried out with a cup anemometer. According to the available literature, this is the first time a cup anemometer has been used in a stratospheric balloon mission. The results indicate the need to consider the horizontal wind speed from the balloon ascent phase for thermal calculations of the mission.

4.
Space Sci Rev ; 218(1): 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153338

RESUMO

EUSO-Balloon is a pathfinder for JEM-EUSO, the mission concept of a spaceborne observatory which is designed to observe Ultra-High Energy Cosmic Ray (UHECR)-induced Extensive Air Showers (EAS) by detecting their UltraViolet (UV) light tracks "from above." On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. After reaching a floating altitude of 38 km, EUSO-Balloon imaged the UV light in the wavelength range ∼290-500 nm for more than 5 hours using the key technologies of JEM-EUSO. The flight allowed a good understanding of the performance of the detector to be developed, giving insights into possible improvements to be applied to future missions. A detailed measurement of the photoelectron counts in different atmospheric and ground conditions was achieved. By means of the simulation of the instrument response and by assuming atmospheric models, the absolute intensity of diffuse light was estimated. The instrument detected hundreds of laser tracks with similar characteristics to EASs shot by a helicopter flying underneath. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. The reconstruction of the direction of the laser tracks was performed. In this work, a review of the main results obtained by EUSO-Balloon is presented as well as implications for future space-based observations of UHECRs.

5.
Astrobiology ; 20(3): 394-404, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027169

RESUMO

The aim of this study was to demonstrate for the first time Fuligo septica spore viability in the stratosphere through spore germination and its complete life cycle. These protozoan spores were flown by the National Aeronautics and Space Administration (NASA) Columbia Scientific Balloon Facility (CSBF) flight 667NT, launched from its base in Fort Sumner, New Mexico. F. septica spores were exposed to stratospheric conditions on board the NASA/CSBF 667 balloon flight for 9 h. The spores obtained after the flight and those from the control box that stayed at ground maintained the same size and morphology, as will be shown in this work. The spores retained viability, and all life cycle stages were obtained by in vitro culture. Moreover, some life cycle events were observed for the first time in F. septica.


Assuntos
Exobiologia/métodos , Estágios do Ciclo de Vida , Physarida/fisiologia , Esporos de Protozoários/fisiologia , Altitude , Atmosfera/química , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/fisiologia , Meio Ambiente Extraterreno/química , Raios Ultravioleta/efeitos adversos , Estados Unidos , United States National Aeronautics and Space Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA