Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; : e16382, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148360

RESUMO

PREMISE: Intraspecific variation in flower microbiome composition can mediate pollination and reproduction, and so understanding the community assembly processes driving this variation is critical. Yet the relative importance of trait-based host filtering and dispersal in shaping among-species variation in floral microbiomes remains unknown. METHODS: Within two clades of Brassicaceae, we compared diversity and composition of floral microbiomes in natural populations of focal nickel and selenium hyperaccumulator species and two of their non-accumulating relatives. We assessed the relative strengths of floral elemental composition, plant phylogenetic distance (host filtering), and geography (dispersal) in driving floral microbiome composition. RESULTS: Species in the nickel hyperaccumulator clade had strongly divergent floral microbiomes, the most of that variation driven by floral elemental composition, followed by geographic distance between plant populations and, lastly, phylogenetic distance. Conversely, within the selenium hyperaccumulator clade, floral microbiome divergence was much lower among the species and elemental composition, geography, and plant phylogeny were far weaker determinants of microbiome variation. CONCLUSIONS: Our results show that the strength of elemental hyperaccumulation's effect on floral microbiomes differs substantially among plant clades, possibly due to variation in elements as selective filters or in long-distance dispersal probability in different habitats.

2.
Ann Bot ; 127(7): 887-902, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33675229

RESUMO

BACKGROUND AND AIMS: We investigate patterns of evolution of genome size across a morphologically and ecologically diverse clade of Brassicaceae, in relation to ecological and life history traits. While numerous hypotheses have been put forward regarding autecological and environmental factors that could favour small vs. large genomes, a challenge in understanding genome size evolution in plants is that many hypothesized selective agents are intercorrelated. METHODS: We contribute genome size estimates for 47 species of Streptanthus Nutt. and close relatives, and take advantage of many data collections for this group to assemble data on climate, life history, soil affinity and composition, geographic range and plant secondary chemistry to identify simultaneous correlates of variation in genome size in an evolutionary framework. We assess models of evolution across clades and use phylogenetically informed analyses as well as model selection and information criteria approaches to identify variables that can best explain genome size variation in this clade. KEY RESULTS: We find differences in genome size and heterogeneity in its rate of evolution across subclades of Streptanthus and close relatives. We show that clade-wide genome size is positively associated with climate seasonality and glucosinolate compounds. Model selection and information criteria approaches identify a best model that includes temperature seasonality and fraction of aliphatic glucosinolates, suggesting a possible role for genome size in climatic adaptation or a role for biotic interactions in shaping the evolution of genome size. We find no evidence supporting hypotheses of life history, range size or soil nutrients as forces shaping genome size in this system. CONCLUSIONS: Our findings suggest climate seasonality and biotic interactions as potential forces shaping the evolution of genome size and highlight the importance of evaluating multiple factors in the context of phylogeny to understand the effect of possible selective agents on genome size.


Assuntos
Glucosinolatos , Mostardeira , Evolução Biológica , Tamanho do Genoma , Nutrientes , Filogenia , Solo
3.
Am J Bot ; 108(10): 1873-1888, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642935

RESUMO

PREMISE: Forecasting how species will respond phenologically to future changes in climate is a major challenge. Many studies have focused on estimating species- and community-wide phenological sensitivities to climate to make such predictions, but sensitivities may vary within species, which could result in divergent phenological responses to climate change. METHODS: We used 743 herbarium specimens of the mountain jewelflower (Streptanthus tortuosus, Brassicaceae) collected over 112 years to investigate whether individuals sampled from relatively warm vs. cool regions differ in their sensitivity to climate and whether this difference has resulted in divergent phenological shifts in response to climate warming. RESULTS: During the past century, individuals sampled from warm regions exhibited a 20-day advancement in flowering date; individuals in cool regions showed no evidence of a shift. We evaluated two potential drivers of these divergent responses: differences between regions in (1) the degree of phenological sensitivity to climate and (2) the magnitude of climate change experienced by plants, or (3) both. Plants sampled from warm regions were more sensitive to temperature-related variables and were subjected to a greater degree of climate warming than those from cool regions; thus our results suggest that the greater temporal shift in flowering date in warm regions is driven by both of these factors. CONCLUSIONS: Our results are among the first to demonstrate that species exhibited intraspecific variation in sensitivity to climate and that this variation can contribute to divergent responses to climate change. Future studies attempting to forecast temporal shifts in phenology should consider intraspecific variation.


Assuntos
Mudança Climática , Reprodução , Flores , Plantas , Estações do Ano , Temperatura
4.
Proc Biol Sci ; 287(1927): 20200559, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32396796

RESUMO

Coexistence results from a complex suite of past and contemporary processes including biogeographic history, adaptation, ecological interactions and reproductive dynamics. Here we explore drivers of local micro-parapatry in which two closely related and reproductively isolated Streptanthus species (jewelflower, Brassicaceae) inhabit continuous or adjacent habitat patches and occur within seed dispersal range, yet rarely overlap in fine-scale distribution. We find some evidence for abiotic niche partitioning and local adaptation, however differential survival across habitats cannot fully explain the scarcity of coexistence. Competition may also reduce the fitness of individuals migrating into occupied habitats, yet its effects are insufficient to drive competitive exclusion. Experimental migrants suffered reduced seed production and seed viability at sites occupied by heterospecifics, and we infer that heterospecific pollen transfer by shared pollinators contributes to wasted gametes when the two congeners come into contact. A minority disadvantage may reduce effective colonization of patches already occupied by heterospecifics, even when habitat patches are environmentally suitable. Differential adaptation and resource competition have often been evoked as primary drivers of habitat segregation in plants, yet negative reproductive interactions-including reproductive interference and decreased fecundity among low-frequency migrants-may also contribute to non-overlapping distributions of related species along local tension zones.


Assuntos
Adaptação Fisiológica/fisiologia , Brassicaceae/fisiologia , Ecossistema , Pólen , Polinização , Reprodução , Dispersão de Sementes , Simpatria
5.
Am J Bot ; 107(2): 350-363, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32056208

RESUMO

PREMISE: The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. METHODS: Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. RESULTS: Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low-elevation populations germinated in the fall without chilling, whereas high-elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate-change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high-elevation populations. CONCLUSIONS: The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.


Assuntos
Sinais (Psicologia) , Germinação , Mudança Climática , Estações do Ano , Sementes , Temperatura
6.
J Hered ; 110(5): 587-600, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31062855

RESUMO

Globally, a small number of plants have adapted to terrestrial outcroppings of serpentine geology, which are characterized by soils with low levels of essential mineral nutrients (N, P, K, Ca, Mo) and toxic levels of heavy metals (Ni, Cr, Co). Paradoxically, many of these plants are restricted to this harsh environment. Caulanthus ampexlicaulis var. barbarae (Brassicaceae) is a rare annual plant that is strictly endemic to a small set of isolated serpentine outcrops in the coastal mountains of central California. The goals of the work presented here were to 1) determine the patterns of genetic connectivity among all known populations of C. ampexlicaulis var. barbarae, and 2) estimate contemporary effective population sizes (Ne), to inform ongoing genomic analyses of the evolutionary history of this taxon, and to provide a foundation upon which to model its future evolutionary potential and long-term viability in a changing environment. Eleven populations of this taxon were sampled, and population-genetic parameters were estimated using 11 nuclear microsatellite markers. Contemporary effective population sizes were estimated using multiple methods and found to be strikingly small (typically Ne < 10). Further, our data showed that a substantial component of genetic connectivity of this taxon is not at equilibrium, and instead showed sporadic gene flow. Several lines of evidence indicate that gene flow between isolated populations is maintained through long-distance seed dispersal (e.g., >1 km), possibly via zoochory.


Assuntos
Brassicaceae/genética , Variação Genética , Genética Populacional , Alelos , Brassicaceae/classificação , Fluxo Gênico , Genótipo , Hibridização Genética , Repetições de Microssatélites , Filogenia , Filogeografia , Densidade Demográfica
7.
Proc Natl Acad Sci U S A ; 111(42): 15132-7, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25267640

RESUMO

Plant soil specialists contribute greatly to global diversity; however, the ecoevolutionary forces responsible for generating this diversity are poorly understood. We integrate molecular phylogenies with descriptive and experimental ecological data, creating a powerful framework with which to elucidate forces driving soil specialization. Hypotheses explaining edaphic specialization have historically focused on costs of adaptation to elements (e.g., nickel, calcium/magnesium) and accompanying tradeoffs in competitive ability in benign soils. We combine in situ microhabitat data for 37 streptanthoid species (Brassicaceae), soil analyses, and competition experiments with their phylogeny to reconstruct selective forces generating serpentine soil endemism, which has four to five independent origins in this group. Coupling ancestral state reconstruction with phylogenetic independent contrasts, we examine the magnitude and timing of changes in soil and habitat attributes relative to inferred shifts to serpentine. We find large changes in soil chemistry at nodes associated with soil shifts, suggesting that elemental changes occurred concomitantly with soil transitions. In contrast, the amount of bare ground surrounding plants in the field ("bareness"), which is greater in serpentine environments, is conserved across soil-type shifts. Thus, occupation of bare environments preceded shifts to serpentine, and may serve as an evolutionary precursor to harsh elemental soils and environments. In greenhouse experiments, taxa from barer environments are poorer competitors, a tradeoff that may contribute to soil endemism. The hypothesis of occupation of bare habitats as a precursor of soil specialization can be tested in other systems with a similar integrative ecophylogenetic approach, thereby providing deeper insights into this rich source of biodiversity.


Assuntos
Brassicaceae/fisiologia , Ecossistema , Plantas/metabolismo , Solo , Adaptação Fisiológica , Biodiversidade , Evolução Biológica , Modelos Estatísticos , Filogenia , Fenômenos Fisiológicos Vegetais
8.
Am J Bot ; 103(3): 514-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26451033

RESUMO

PREMISE OF THE STUDY: Coflowering plants often share pollinators and may receive mixed species pollen loads. Although detrimental effects of heterospecific pollen receipt have been documented, trait-based modifiers of interactions on the stigma remain largely unknown. Chemicals that mediate interactions between sporophytes could also influence pollen-pollen or pollen-style interactions. We test for the first time whether nickel (Ni) accumulation in pollen can lead to "elemental allelopathy" and intensify the fitness consequences of heterospecific pollen receipt. METHODS: We grew Ni-hyperaccumulator Streptanthus polygaloides in soils augmented with three concentrations of Ni, measured pollen Ni concentration, and hand-pollinated non-Ni hyperaccumulator Mimulus guttatus. We assayed pollen germination, tube growth and seeds of M. guttatus after pure and mixed species pollinations. KEY RESULTS: Streptanthus polygaloides pollen accumulated Ni in proportion to soil availability and at levels significantly greater than M. guttatus pollen. Although receipt of S. polygaloides pollen increased M. guttatus pollen germination, it decreased the proportion of pollen tubes reaching the ovary and seed number. Increased Ni in pollen, however, did not significantly intensify the effect of S. polygaloides pollen receipt on M. guttatus seed production. CONCLUSIONS: Different levels of Ni in the pollen of S. polygaloides achieved in the greenhouse did not significantly reduce the fitness of M. guttatus. Stigma tolerance to Ni may also have contributed to the lack of response to increased Ni in heterospecific pollen. This study paves the way for additional tests in other metal hyperaccumulators and recipients, and to identify mechanisms of interactions on the stigma.


Assuntos
Alelopatia , Brassicaceae/fisiologia , Mimulus/fisiologia , Pólen/fisiologia , Análise de Variância , Análise dos Mínimos Quadrados
9.
New Phytol ; 208(3): 915-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26192213

RESUMO

We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments.


Assuntos
Evolução Biológica , Brassicaceae/genética , Ecossistema , Glucosinolatos/metabolismo , Alcaloides de Triptamina e Secologanina , Brassicaceae/metabolismo , Herbivoria , Solo/química
10.
Am J Bot ; 102(3): 379-89, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25784471

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: For plant species that occur in heavy-metal-rich soil, floral metal accumulation may produce an "elemental filter" that reduces pollinator visitation rate and species richness and changes pollinator species composition relative to closely related species growing on normal soils. Consequently, metal hyperaccumulation may contribute to pollinator-mediated reproductive isolation between closely related plant species that differ in metal accumulation.• METHODS: To test these ideas, we characterized plant-pollinator interactions in a sympatric pair of species that differ in metal accumulation (Streptanthus polygaloides, a nickel (Ni) hyperaccumulator, and S. tortuosus, a nonaccumulator). To test the elemental filter hypothesis, we presented arrays of S. polygaloides that were grown in either Ni-treated or control soils to insects at both S. polygaloides and S. tortuosus sites and recorded visitation.• KEY RESULTS: Naturally occurring S. polygaloides hyperaccumulated Ni in anthers and accumulated Ni in nectar, while S. tortuosus did not. Floral visitation rates in natural populations were higher to S. tortuosus than S. polygaloides. In addition, while floral visitor richness was similar, few pollinator taxa were shared between the two plant species. Nickel-treatment of S. polygaloides reduced visits by bees, but only for arrays presented at S. tortuosus sites.• CONCLUSIONS: We show that the Ni hyperaccumulator S. polygaloides hosts a distinct floral visitor community, indicating that metal accumulation creates a filter for pollinators, similar to that documented for herbivores. Our study highlights a novel mechanism by which the abiotic environment can alter plant-pollinator interactions, and consequently plant reproduction and speciation.


Assuntos
Brassicaceae/fisiologia , Insetos/fisiologia , Níquel/metabolismo , Isolamento Reprodutivo , Solo/química , Animais , California , Polinização , Especificidade da Espécie , Simpatria
11.
Ecol Evol ; 14(3): e11174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529025

RESUMO

Prolonged water stress can shift rhizoplane microbial communities, yet whether plant phylogenetic relatedness or drought tolerance predicts microbial responses is poorly understood. To explore this question, eight members of the Streptanthus clade with varying affinity to serpentine soil were subjected to three watering regimes. Rhizoplane bacterial communities were characterized using 16S rRNA gene amplicon sequencing and we compared the impact of watering treatment, soil affinity, and plant species identity on bacterial alpha and diversity. We determined which taxa were enriched among drought treatments using DESeq2 and identified features of soil affinity using random forest analysis. We show that water stress has a greater impact on microbial community structure than soil affinity or plant identity, even within a genus. Drought reduced alpha diversity overall, but plant species did not strongly differentiate alpha diversity. Watering altered the relative abundance of bacterial genera within Proteobacteria, Firmicutes, Bacteroidetes, Planctomycetes, and Acidobacteria, which responded similarly in the rhizoplane of most plant species. In addition, bacterial communities were more similar when plants received less water. Pseudarthrobacter was identified as a feature of affinity to serpentine soil while Bradyrhizobium, Chitinophaga, Rhodanobacter, and Paenibacillus were features associated with affinity to nonserpentine soils among Streptanthus. The homogenizing effect of drought on microbial communities and the increasing prevalence of Gram-negative bacteria across all plant species suggest that effects of water stress on root-associated microbiome structure may be predictable among closely related plant species that inhabit very different soil environments. The functional implications of observed changes in microbiome composition remain to be studied.

12.
Ecology ; : e4423, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39344085

RESUMO

The seasonal timing of life history transitions is often critical to fitness, and many organisms rely upon environmental cues to match life cycle events with favorable conditions. In plants, the timing of seed germination is mediated by seasonal cues such as rainfall and temperature. Variation in cue responses among species can reflect evolutionary processes and adaptation to local climate and can affect vulnerability to changing conditions. Indeed, climate change is altering the timing of precipitation, and germination responses to such change can have consequences for individual fitness, population dynamics, and species distributions. Here, we assessed responses to the seasonal timing of germination-triggering rains for eleven species spanning the Streptanthus/Caulanthus clade (Brassicaceae). To do so, we experimentally manipulated the onset date of rainfall events, measured effects on germination fraction, and evaluated whether responses were constrained by evolutionary relationships across the phylogeny. We then explored the possible consequences of these responses to contemporary shifts in precipitation timing. Germination fractions decreased with later onset of rains and cooler temperatures for all but three Caulanthus species. Species' germination responses to the timing of rainfall and seasonal temperatures were phylogenetically constrained, with Caulanthus species appearing less responsive. Further, four species are likely already experiencing significant decreases in germination fractions with observed climate change, which has shifted the timing of rainfall towards the cooler, winter months in California. Overall, our findings emphasize the sensitivity of germination to seasonal conditions, underscore the importance of interacting environmental cues, and highlight vulnerability to shifting precipitation patterns with climate change, particularly in more northern, mesic species.

13.
Ecology ; 103(12): e3827, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857374

RESUMO

Species range sizes and realized niche breadths vary tremendously. Understanding the source of this variation has been a long-term aim in evolutionary ecology and is a major tool in efforts to ameliorate the impacts of changing climates on species distributions. Species ranges that span a large climatic envelope can be achieved by a collection of specialized genotypes locally adapted to a small range of conditions, by genotypes with stable fitness across variable environments, or a combination of these factors. We asked whether fitness expressed along a key niche axis, water availability, could explain a species' realized niche breadth, its geographic range and climate breadth, in 11 species from a clade of jewelflowers whose range sizes vary by two orders of magnitude. Specifically, we explored whether the range size of a species was related to the ability of genotypes (maternal families) to maintain fitness across a range of experimental water availabilities based on 30-year historical field precipitation regimes. We operationally characterized fitness homeostasis through the coefficient of variation in fitness of a genotype (family) across the experimental water gradient. We found that species with genotypes that had high fitness homeostasis, low variation in fitness over our treatments, had larger climatic niche breadth and geographic range in their field distributions. The result was robust to alternate measures of fitness homeostasis. Our results show that the fitness homeostasis of genotypes can be a major factor contributing to niche breadth and range size in this clade. Fitness homeostasis can buffer species from loss of genetic diversity and under changing climates, provides time for adaptation to future conditions.


Assuntos
Clima , Ecossistema , Humanos , Água , Evolução Biológica , Homeostase
14.
Ecology ; 103(7): e3698, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352825

RESUMO

Offspring size is a key functional trait that can affect subsequent life history stages; in many species, it exhibits both local adaptation and phenotypic plasticity. Variation among populations in offspring size may be explained by various factors, including local climatic conditions. However, geographic variation in climate may be partitioned into long-term and interannual sources of variation, which may differ in their effects on population mean offspring size. To assess environmental correlates of offspring size, we evaluated geographic variation in seed mass among 88 populations representing 6 species of Streptanthus (Brassicaceae) distributed across a broad climatic gradient in California. We examined the effects of temperature-mediated growing season length and precipitation on population mean seed mass to determine whether it is best explained by (1) long-term mean climatic conditions; (2) interannual climate anomalies (i.e., deviations in climate from long-term means) during the year of seed development, or (3) interactions between climate variables. Both long-term mean climate and climate anomalies in the year of collection were associated with population mean seed mass, but their effects differed in direction and magnitude. Relatively large seeds were produced at chronically wet sites but also during drier-than-average years. This contrast indicates that these associations may be generated by different mechanisms (i.e., adaptive evolution vs. phenotypic plasticity) and may be evidence of countergradient plasticity in seed mass. In addition, populations occurring in locations characterized by relatively long growing seasons produced comparatively large seeds, particularly among chronically dry sites. This study highlights the need to consider that the responses of seed mass to long-term versus recent climatic conditions may differ and that climate variables may interact to predict seed mass. Such considerations are especially important when using these patterns to forecast the long- and short-term responses of seed mass to climate change. The results presented here also contribute to our broader understanding of how climate drives long-term (e.g., local adaptation) and short-term (e.g., phenotypic plasticity) variation in functional traits, such as offspring size across landscapes.


Assuntos
Brassicaceae , Aclimatação , Mudança Climática , Fenótipo , Sementes/fisiologia
15.
Appl Plant Sci ; 7(2): e01215, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30828502

RESUMO

PREMISE OF THE STUDY: The endangered Streptanthus glandulosus subsp. niger (Brassicaceae) is endemic to a single peninsula in California and threatened by fragmentation. We developed microsatellite markers to investigate genetic diversity in the two extant populations and the degree to which they have diverged from one another. METHODS AND RESULTS: We used Illumina HiSeq high-throughput sequencing to develop 15 microsatellite markers, 14 of which were polymorphic. These di- and trinucleotide repeats yielded one to 11 alleles per locus in 61 plants across the two populations. Levels of observed and expected heterozygosities ranged from 0.108 to 0.946 and 0.257 to 0.839, respectively. We demonstrated cross-amplification in a second rare subspecies, S. glandulosus subsp. secundus, and in the widespread congener S. tortuosus. CONCLUSIONS: These are the first microsatellites reported for this subspecies, and they will aid in the inclusion of genetic information in conservation planning. Cross-amplification was demonstrated in two related taxa, including one of conservation concern.

16.
Evolution ; 73(7): 1375-1391, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31152435

RESUMO

Speciation occurs when reproductive barriers substantially reduce gene flow between lineages. Understanding how specific barriers contribute to reproductive isolation offers insight into the initial forces driving divergence and the evolutionary and ecological processes responsible for maintaining diversity. Here, we quantified multiple pre- and post-pollination isolating barriers in a pair of closely related California Jewelflowers (Streptanthus, Brassicaceae) living in an area of sympatry. S. breweri and S. hesperidis are restricted to similar serpentine habitats; however, populations are spatially isolated at fine-scales and rarely co-occur in intermixed stands. Several intrinsic postzygotic barriers were among the strongest we quantified, yet, postzygotic barriers currently contribute little to overall reproductive isolation due to the cumulative strength of earlier-acting extrinsic barriers, including spatial isolation, and flowering time and pollinator differences. Data from multiple years suggest that pre-pollination barriers may have different strengths depending on annual environmental conditions. Similarly, crossing data suggest that the strength of intrinsic isolation may vary among different population pairs. Estimates of total reproductive isolation in S. breweri and S. hesperidis are robust to uncertainty and variability in individual barrier strength estimates, demonstrating how multiple barriers can act redundantly to prevent gene flow between close relatives living in sympatry.


Assuntos
Brassicaceae/genética , Fluxo Gênico , Especiação Genética , Isolamento Reprodutivo , California , Ecossistema , Polinização , Simpatria
17.
Evolution ; 72(5): 1063-1079, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603189

RESUMO

Understanding the relative roles of intrinsic and extrinsic reproductive barriers, and their interplay within the geographic context of diverging taxa, remains an outstanding challenge in the study of speciation. We conducted a comparative analysis of reproductive isolation in California Jewelflowers (Streptanthus, s.l., Brassicaceae) by quantifying potential barriers to gene flow at multiple life history stages in 39 species pairs spanning five million years of evolutionary divergence. We quantified nine potential pre- and postzygotic barriers and explored patterns of reproductive isolation in relation to genetic distance. Intrinsic postzygotic isolation was initially weak, increased at intermediate genetic distances, and reached a threshold characterized by complete genetic incompatibility. Climatic niche differences were strong at shallow genetic distances, and species pairs with overlapping ranges showed slight but appreciable phenological isolation, highlighting the potential for ecological barriers to contribute to speciation. Geographic analyses suggest that speciation is not regionally allopatric in the California Jewelflowers, as recently diverged taxa occur in relatively close proximity and display substantial range overlap. Young pairs are characterized by incomplete intrinsic postzygotic isolation, suggesting that extrinsic barriers or fine-scale spatial segregation are more important early in the divergence process than genetic incompatibilities.


Assuntos
Evolução Biológica , Brassicaceae/genética , Especiação Genética , Brassicaceae/classificação , California , Clima , Fluxo Gênico , Geografia , Filogenia , Isolamento Reprodutivo
18.
Genome Biol Evol ; 9(12): 3478-3494, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220486

RESUMO

Plants on serpentine soils provide extreme examples of adaptation to environment, and thus offer excellent models for the study of evolution at the molecular and genomic level. Serpentine outcrops are derived from ultramafic rock and have extremely low levels of essential plant nutrients (e.g., N, P, K, and Ca), as well as toxic levels of heavy metals (e.g., Ni, Cr, and Co) and low moisture availability. These outcrops provide habitat to a number of endemic plant species, including the annual mustard Caulanthus amplexicaulis var. barbarae (Cab) (Brassicaceae). Its sister taxon, C. amplexicaulis var. amplexicaulis (Caa), is intolerant to serpentine soils. Here, we assembled and annotated comprehensive reference transcriptomes of both Caa and Cab for use in protein coding sequence comparisons. A set of 29,443 reciprocal best Blast hit (RBH) orthologs between Caa and Cab was compared with identify coding sequence variants, revealing a high genome-wide dN/dS ratio between the two taxa (mean = 0.346). We show that elevated dN/dS likely results from the composite effects of genetic drift, positive selection, and the relaxation of negative selection. Further, analysis of paralogs within each taxon revealed the signature of a period of elevated gene duplication (∼10 Ma) that is shared with other species of the tribe Thelypodieae, and may have played a role in the striking morphological and ecological diversity of this tribe. In addition, distribution of the synonymous substitution rate, dS, is strongly bimodal, indicating a history of reticulate evolution that may have contributed to serpentine adaptation.


Assuntos
Evolução Molecular , Extremófilos/genética , Duplicação Gênica , Deriva Genética , Adaptação Fisiológica , Biologia Computacional , Extremófilos/crescimento & desenvolvimento , Extremófilos/fisiologia , Perfilação da Expressão Gênica , Variação Genética , Genômica , Metais Pesados , Filogenia , Seleção Genética , Transcriptoma
19.
New Phytol ; 146(2): 211-217, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-33862973

RESUMO

Plants use chemical defences to reduce damage from herbivores and the effectiveness of these defences can be altered by biotic and abiotic factors, such as herbivory and soil resource availability. Streptanthus polygaloides, a nickel (Ni) hyperaccumulator, possesses both Ni-based defences and organic defences (glucosinolates), but the extent to which these defences interact and respond to environmental conditions is unknown. S. polygaloides plants were grown on high-Ni and low-Ni soil and concentrations of Ni and glucosinolates were compared with those of the congeneric non-hyperaccumulator, S. insignus spp. insignus, grown under the same conditions. Ni contents were highest (4000 µg g-1 dry tissue) in S. polygaloides plants grown on high-Ni soil. Glucosinolate content was significantly higher in S. insignus than in S. polygaloides suggesting that plants defended by Ni produce a lower concentration of organic defences. In a separate experiment, high-Ni S. polygaloides plants were exposed to simulated herbivory or live folivores to determine the inducibility of Ni-based and organic defences. Contents of Ni were not affected by either herbivory treatment, whereas glucosinolate concentrations were >30% higher in damaged plants. We concluded that the Ni-based defence of S. polygaloides is not induced by herbivory.

20.
Oecologia ; 98(3-4): 379-384, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28313915

RESUMO

Nickel hyperaccumulating plants have more than 1000 mg Ni kg-1 dry weight when grown on nickel-bearing soils. We hypothesized that Ni hyperaccumulation could serve as a chemical defense against herbivores In feeding experiments with potential insect herbivores and Ni hyperaccumulating plants, only those inseets fed leaves from plants grown on non-nickel-bearing soil survived or showed a weight gain. Among chemical parameters measured, only Ni content of plants was sufficient to explain this result. When subjected to herbivory by lepidopteran larvae, plants grown on Ni-amended soil showed greater survival and yield than plants on unamended soil. Ni hyperaccumulation may be an effective plant chemical defense against herbivores because of its high lethality, apparent low cost, and broad spectrum of toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA