Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971393

RESUMO

MOTIVATION: A large number of studies have shown that circular RNA (circRNA) affects biological processes by competitively binding miRNA, providing a new perspective for the diagnosis, and treatment of human diseases. Therefore, exploring the potential circRNA-miRNA interactions (CMIs) is an important and urgent task at present. Although some computational methods have been tried, their performance is limited by the incompleteness of feature extraction in sparse networks and the low computational efficiency of lengthy data. RESULTS: In this paper, we proposed JSNDCMI, which combines the multi-structure feature extraction framework and Denoising Autoencoder (DAE) to meet the challenge of CMI prediction in sparse networks. In detail, JSNDCMI integrates functional similarity and local topological structure similarity in the CMI network through the multi-structure feature extraction framework, then forces the neural network to learn the robust representation of features through DAE and finally uses the Gradient Boosting Decision Tree classifier to predict the potential CMIs. JSNDCMI produces the best performance in the 5-fold cross-validation of all data sets. In the case study, seven of the top 10 CMIs with the highest score were verified in PubMed. AVAILABILITY: The data and source code can be found at https://github.com/1axin/JSNDCMI.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , RNA Circular , Redes Neurais de Computação , Software , Biologia Computacional/métodos
2.
Cereb Cortex ; 34(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39329357

RESUMO

Arithmetic, a high-order cognitive ability, show marked individual difference over development. Despite recent advancements in neuroimaging techniques have enabled the identification of brain markers for individual differences in high-order cognitive abilities, it remains largely unknown about the brain markers for arithmetic. This study used a data-driven connectome-based prediction model to identify brain markers of arithmetic skills from arithmetic-state functional connectivity and individualized structural similarity in 132 children aged 8 to 15 years. We found that both subtraction-state functional connectivity and individualized SS successfully predicted subtraction and multiplication skills but multiplication-state functional connectivity failed to predict either skill. Among the four successful prediction models, most predictive connections were located in frontal-parietal, default-mode, and secondary visual networks. Further computational lesion analyses revealed the essential structural role of frontal-parietal network in predicting subtraction and the essential functional roles of secondary visual, language, and ventral multimodal networks in predicting multiplication. Finally, a few shared nodes but largely nonoverlapping functional and structural connections were found to predict subtraction and multiplication skills. Altogether, our findings provide new insights into the brain markers of arithmetic skills in children and highlight the importance of studying different connectivity modalities and different arithmetic domains to advance our understanding of children's arithmetic skills.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Criança , Masculino , Feminino , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Conceitos Matemáticos , Matemática , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem , Cognição/fisiologia
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38300184

RESUMO

T1 image is a widely collected imaging sequence in various neuroimaging datasets, but it is rarely used to construct an individual-level brain network. In this study, a novel individualized radiomics-based structural similarity network was proposed from T1 images. In detail, it used voxel-based morphometry to obtain the preprocessed gray matter images, and radiomic features were then extracted on each region of interest in Brainnetome atlas, and an individualized radiomics-based structural similarity network was finally built using the correlational values of radiomic features between any pair of regions of interest. After that, the network characteristics of individualized radiomics-based structural similarity network were assessed, including graph theory attributes, test-retest reliability, and individual identification ability (fingerprinting). At last, two representative applications for individualized radiomics-based structural similarity network, namely mild cognitive impairment subtype discrimination and fluid intelligence prediction, were exemplified and compared with some other networks on large open-source datasets. The results revealed that the individualized radiomics-based structural similarity network displays remarkable network characteristics and exhibits advantageous performances in mild cognitive impairment subtype discrimination and fluid intelligence prediction. In summary, the individualized radiomics-based structural similarity network provides a distinctive, reliable, and informative individualized structural brain network, which can be combined with other networks such as resting-state functional connectivity for various phenotypic and clinical applications.


Assuntos
Encéfalo , Radiômica , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Neuroimagem
4.
Proteins ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219099

RESUMO

A fundamental problem in the field of protein evolutionary biology is determining the degree and nature of evolutionary relatedness among homologous proteins that have diverged to a point where they share less than 30% amino acid identity yet retain similar structures and/or functions. Such proteins are said to lie within the "Twilight Zone" of amino acid identity. Many researchers have leveraged experimentally determined structures in the quest to classify proteins in the Twilight Zone. Such endeavors can be highly time consuming and prohibitively expensive for large-scale analyses. Motivated by this problem, here we use molecular weight-hydrophobicity physicochemical dynamic time warping (MWHP DTW) to quantify similarity of simulated and real-world homologous protein domains. MWHP DTW is a physicochemical method requiring only the amino acid sequence to quantify similarity of related proteins and is particularly useful in determining similarity within the Twilight Zone due to its resilience to primary sequence substitution saturation. This is a step forward in determination of the relatedness among Twilight Zone proteins and most notably allows for the discrimination of random similarity and true homology in the 0%-20% identity range. This method was previously presented expeditiously just after the outbreak of COVID-19 because it was able to functionally cluster ACE2-binding betacoronavirus receptor binding domains (RBDs), a task that has been elusive using standard techniques. Here we show that one reason that MWHP DTW is an effective technique for comparisons within the Twilight Zone is because it can uncover hidden homology by exploiting physicochemical conservation, a problem that protein sequence alignment algorithms are inherently incapable of addressing within the Twilight Zone. Further, we present an extended definition of the Twilight Zone that incorporates the dynamic relationship between structural, physicochemical, and sequence-based metrics.

5.
BMC Genomics ; 25(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166563

RESUMO

BACKGROUND: Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS: In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION: We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.


Assuntos
Genoma , Genômica , Anotação de Sequência Molecular
6.
Biochem Biophys Res Commun ; 734: 150613, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39222577

RESUMO

The native conformation of a protein plays a decisive role in ensuring its functionality. It is established that the spatial structure of proteins may exhibit a greater degree of conservation than the corresponding amino acid sequences. This study aims to clarify structural distinctions between homologous and non-homologous proteins with identical topology. The analysis focuses on secondary structures with special emphasis on their fraction, distribution along the polypeptide chain, and chirality. Three different groups of proteins with identical topology were considered according to the CATH database: a homologous group of Globins, a group of Phycocyanins, which is often considered as a potential relative of globins, and a diverse assembly of other globin-like proteins. Some structural patterns in the distribution of secondary structure have been identified within Globins. A similar profile was observed in Phycocyanins, in contrast to the third group. In addition, a distinguishable structural motif, including structures such as 310-helix and irregular structure, has been found in both Globins and Phycocyanins, which can be proposed as an evolutionary imprint.

7.
Mem Cognit ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992247

RESUMO

Laboratory studies using a reception paradigm have found that memory items sharing similar entities and relations with a working memory cue (surface matches) are easier to retrieve than items sharing only a system of abstract relations (structural matches). However, the naturalistic approach has contended that the observed supremacy of superficial similarity could have originated in a shallow processing of somewhat inconsequential stories, as well as in the inadvertent inclusion of structural similarity during the construction of surface matches. We addressed the question of which kind of similarity dominates retrieval through a hybrid paradigm that combines the ecological validity of the naturalistic production paradigm with the experimental control of the reception paradigm. In Experiment 1 we presented participants with a target story that maintained either superficial or structural similarities with two popular movies that had received a careful processing prior to the experimental session. Experiment 2 replicated the same procedure with highly viralized public events. In line with traditional laboratory results, surface matches were significantly better retrieved than structural matches, confirming the supremacy of superficial similarities during retrieval.

8.
J Appl Clin Med Phys ; 25(4): e14288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345201

RESUMO

PURPOSE: This study aims to evaluate the viability of utilizing the Structural Similarity Index (SSI*) as an innovative imaging metric for quality assurance (QA) of the multi-leaf collimator (MLC). Additionally, we compared the results obtained through SSI* with those derived from a conventional Gamma index test for three types of Varian machines (Trilogy, Truebeam, and Edge) over a 12-week period of MLC QA in our clinic. METHOD: To assess sensitivity to MLC positioning errors, we designed a 1 cm slit on the reference MLC, subsequently shifted by 0.5-5 mm on the target MLC. For evaluating sensitivity to output error, we irradiated five 25 cm × 25 cm open fields on the portal image with varying Monitor Units (MUs) of 96-100. We compared SSI* and Gamma index tests using three linear accelerator (LINAC) machines: Varian Trilogy, Truebeam, and Edge, with MLC leaf widths of 1, 0.5, and 0.25 mm. Weekly QA included VMAT and static field modes, with Picket fence test images acquired. Mechanical uncertainties related to the LINAC head, electronic portal imaging device (EPID), and MLC during gantry rotation and leaf motion were monitored. RESULTS: The Gamma index test started detecting the MLC shift at a threshold of 4 mm, whereas the SSI* metric showed sensitivity to shifts as small as 2 mm. Moreover, the Gamma index test identified dose changes at 95MUs, indicating a 5% dose difference based on the distance to agreement (DTA)/dose difference (DD) criteria of 1 mm/3%. In contrast, the SSI* metric alerted to dose differences starting from 97MUs, corresponding to a 3% dose difference. The Gamma index test passed all measurements conducted on each machine. However, the SSI* metric rejected all measurements from the Edge and Trilogy machines and two from the Truebeam. CONCLUSIONS: Our findings demonstrate that the SSI* exhibits greater sensitivity than the Gamma index test in detecting MLC positioning errors and dose changes between static and VMAT modes. The SSI* metric outperformed the Gamma index test regarding sensitivity across these parameters.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Equipamentos e Provisões Elétricas , Imagens de Fantasmas , Rotação , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador
9.
Expert Syst Appl ; 238(Pt D)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38646063

RESUMO

Accurate and automatic segmentation of individual cell instances in microscopy images is a vital step for quantifying the cellular attributes, which can subsequently lead to new discoveries in biomedical research. In recent years, data-driven deep learning techniques have shown promising results in this task. Despite the success of these techniques, many fail to accurately segment cells in microscopy images with high cell density and low signal-to-noise ratio. In this paper, we propose a novel 3D cell segmentation approach DeepSeeded, a cascaded deep learning architecture that estimates seeds for a classical seeded watershed segmentation. The cascaded architecture enhances the cell interior and border information using Euclidean distance transforms and detects the cell seeds by performing voxel-wise classification. The data-driven seed estimation process proposed here allows segmenting touching cell instances from a dense, intensity-inhomogeneous microscopy image volume. We demonstrate the performance of the proposed method in segmenting 3D microscopy images of a particularly dense cell population called bacterial biofilms. Experimental results on synthetic and two real biofilm datasets suggest that the proposed method leads to superior segmentation results when compared to state-of-the-art deep learning methods and a classical method.

10.
Entropy (Basel) ; 26(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39202097

RESUMO

When a camera lens is directly faced with a strong light source, image flare commonly occurs, significantly reducing the clarity and texture of the photo and interfering with image processing tasks that rely on visual sensors, such as image segmentation and feature extraction. A novel flare removal network, the Sparse-UFormer neural network, has been developed. The network integrates two core components onto the UFormer architecture: the mixed-scale feed-forward network (MSFN) and top-k sparse attention (TKSA), creating the sparse-transformer module. The MSFN module captures rich multi-scale information, enabling the more effective addressing of flare interference in images. The TKSA module, designed with a sparsity strategy, focuses on key features within the image, thereby significantly enhancing the precision and efficiency of flare removal. Furthermore, in the design of the loss function, besides the conventional flare, background, and reconstruction losses, a structural similarity index loss has been incorporated to ensure the preservation of image details and structure while removing the flare. Ensuring the minimal loss of image information is a fundamental premise for effective image restoration. The proposed method has been demonstrated to achieve state-of-the-art performance on the Flare7K++ test dataset and in challenging real-world scenarios, proving its effectiveness in removing flare artefacts from images.

11.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33313675

RESUMO

At present, computational methods for drug repositioning are mainly based on the whole structures of drugs, which limits the discovery of new functions due to the similarities between local structures of drugs. In this article, we, for the first time, integrated the features of chemical-genomics (substructure-domain) and pharmaco-genomics (domain-indication) based on the assumption that drug-target interactions are mediated by the substructures of drugs and the domains of proteins to identify the relationships between substructure-indication and establish a drug-substructure-indication network for predicting all therapeutic effects of tested drugs through only information on the substructures of drugs. In total, 83 205 drug-indication relationships with different correlation scores were obtained. We used three different verification methods to indicate the accuracy of the method and the reliability of the scoring system. We predicted all indications of olaparib using our method, including the known antitumor effect and unknown antiviral effect verified by literature, and we also discovered the inhibitory mechanism of olaparib toward DNA repair through its specific sub494 (o = C-C: C), as it participates in the low synthesis of the poly subfunction of the apoptosis pathway (hsa04210) by inhibiting the Inositol 1,4,5-trisphosphate receptor(s) (ITPRs) and hydrolyzing poly (ADP ribose) polymerases. ElectroCardioGrams of four drugs (quinidine, amiodarone, milrinone and fosinopril) demonstrated the effect of anti-arrhythmia. Unlike previous studies focusing on the overall structures of drugs, our research has great potential in the search for more therapeutic effects of drugs and in predicting all potential effects and mechanisms of a drug from the local structural similarity.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Interações Medicamentosas , Reposicionamento de Medicamentos , Genômica , Humanos , Proteínas/química , Proteínas/metabolismo
12.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631633

RESUMO

Cross-lingual entity alignment in knowledge graphs is a crucial task in knowledge fusion. This task involves learning low-dimensional embeddings for nodes in different knowledge graphs and identifying equivalent entities across them by measuring the distances between their representation vectors. Existing alignment models use neural network modules and the nearest neighbors algorithm to find suitable entity pairs. However, these models often ignore the importance of local structural features of entities during the alignment stage, which may lead to reduced matching accuracy. Specifically, nodes that are poorly represented may not benefit from their surrounding context. In this article, we propose a novel alignment model called SSR, which leverages the node embedding algorithm in graphs to select candidate entities and then rearranges them by local structural similarity in the source and target knowledge graphs. Our approach improves the performance of existing approaches and is compatible with them. We demonstrate the effectiveness of our approach on the DBP15k dataset, showing that it outperforms existing methods while requiring less time.

13.
Sensors (Basel) ; 23(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447980

RESUMO

Delay tolerant networks (DTNs), are characterized by their difficulty in establishing end-to-end paths and and large message propagation delays. To control network overhead costs, reduce message delays, and improve delivery rates in DTNs, it is essential to not only delete messages that have reached their destination but also to more precisely determine appropriate relay nodes. Based on the above goals, this paper constructs a multi-copy relay node selection router algorithm based on Q-lambda reinforcement learning with reference to the idea of community division (QLCR). In community division, if a node has the highestdegree, it is considered the core node, and nodes with similar interests and structural properties are divided into a community. Node degree refers to the number of nodes associated with the node, indicating its importance in the network. Structural similarity determines the distance between nodes. The selection of relay nodes considers node degree, interests, and structural similarity. The Q-lambda reinforcement learning algorithm enables each node to learn from the entire network, setting corresponding reward values based on encountered nodes meeting the specified conditions. Through iterative processes, the node with the most cumulative reward value is chosen as the final relay node. Experimental results demonstrate that the proposed algorithm achieves a high delivery rate while maintaining low network overhead and delay.

14.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514630

RESUMO

Activity recognition using data collected with smart devices such as mobile and wearable sensors has become a critical component of many emerging applications ranging from behavioral medicine to gaming. However, an unprecedented increase in the diversity of smart devices in the internet-of-things era has limited the adoption of activity recognition models for use across different devices. This lack of cross-domain adaptation is particularly notable across sensors of different modalities where the mapping of the sensor data in the traditional feature level is highly challenging. To address this challenge, we propose ActiLabel, a combinatorial framework that learns structural similarities among the events that occur in a target domain and those of a source domain and identifies an optimal mapping between the two domains at their structural level. The structural similarities are captured through a graph model, referred to as the dependency graph, which abstracts details of activity patterns in low-level signal and feature space. The activity labels are then autonomously learned in the target domain by finding an optimal tiered mapping between the dependency graphs. We carry out an extensive set of experiments on three large datasets collected with wearable sensors involving human subjects. The results demonstrate the superiority of ActiLabel over state-of-the-art transfer learning and deep learning methods. In particular, ActiLabel outperforms such algorithms by average F1-scores of 36.3%, 32.7%, and 9.1% for cross-modality, cross-location, and cross-subject activity recognition, respectively.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos
15.
J Radiol Prot ; 43(3)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37442119

RESUMO

To evaluate the image quality (IQ) of advanced modeled iterative reconstruction (ADMIRE; Siemens Healthcare, Forchheim, Germany) applying image texture and image visual impression as a supplement to physical parameters such as noise level and spatial resolution. An ACR-phantom with four modules was examined at different radiation dose levels. To characterise the image texture, two Haralick texture parameters, contrast and entropy, were assessed at different dose levels and reconstruction algorithms. The visual impression of images and the low-contrast detectability were evaluated by the structural similarity index (SSIM). The spatial resolution was determined by the modulation transfer functions and the line spread function. The Haralick texture parameters, contrast and entropy, decreased with increasing ADMIRE levels. ADMIRE III, IV and V offered a comparable contrast and entropy to those calculated by filtered back projection (FBP) with a radiation dose reduction up to 50%. SSIM (low-contrast detectability) improved with increasing ADMIRE levels. SSIM calculated by ADMIRE IV and V revealed comparable IQ to FBP with a decreased CTDIvolup to 50%. Spatial resolution was retained up to 90% dose reduction. Compared to FBP at the same dose level, the image noise decreased up to 61% with higher ADMIRE levels (σFBP= 17.3 HU andσADMIREV= 10.6 HU at 6.65 mGy). Taking texture analysis and visual perception into account, a more realistic assessment of the dose reduction potential of ADMIRE can be achieved than quality metrics based alone on physical measurements.


Assuntos
Redução da Medicação , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Doses de Radiação , Algoritmos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
16.
Regul Toxicol Pharmacol ; 136: 105275, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244463

RESUMO

The aim of this study is to define chemical categories that can be applied to regulatory read-across assessments for repeated-dose toxicity, by classifying toxic substances based on their structures and mechanism of actions (MoAs). Hemolytic anemia, which often appears primarily, was examined as an example. An integrated database was constructed by collecting publicly available datasets on repeated-dose toxicity, in which 423 out of a total of 1518 chemicals were identified as capable of inducing hemolytic anemia. Subsequently, by grouping these chemicals based on their chemical structures and plausible MoAs on hemolytic substances, we identified the following categories: (i) anilines, (ii) nitrobenzenes, (iii) nitroanilines, (iv) dinitroanilines, (v) ethylene glycol alkyl ethers, (vi) hydroquinones, (vii) oximes, and (viii) hydrazines. In these categories, the toxicant and the measurable key events leading to hematotoxicity were identified, thereby allowing us to justify the categories and to discriminate the category substances. Moreover, toxicokinetics seems to critically affect the hemolytic levels of the category substances. Overall, the categories were validated through a comprehensive analysis of the collected information, while the utility was demonstrated by conducting a case study on the selected category. Further endeavors with this approach would attain categories for other organ toxicity endpoints.


Assuntos
Anemia Hemolítica , Substâncias Perigosas , Humanos , Etilenoglicóis , Toxicocinética , Anemia Hemolítica/induzido quimicamente , Medição de Risco
17.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805916

RESUMO

In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
18.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955547

RESUMO

Among a group of 310 natural antiviral natural metabolites, our team identified three compounds as the most potent natural inhibitors against the SARS-CoV-2 main protease (PDB ID: 5R84), Mpro. The identified compounds are sattazolin and caprolactin A and B. A validated multistage in silico study was conducted using several techniques. First, the molecular structures of the selected metabolites were compared with that of GWS, the co-crystallized ligand of Mpro, in a structural similarity study. The aim of this study was to determine the thirty most similar metabolites (10%) that may bind to the Mpro similar to GWS. Then, molecular docking against Mpro and pharmacophore studies led to the choice of five metabolites that exhibited good binding modes against the Mpro and good fit values against the generated pharmacophore model. Among them, three metabolites were chosen according to ADMET studies. The most promising Mpro inhibitor was determined by toxicity and DFT studies to be caprolactin A (292). Finally, molecular dynamics (MD) simulation studies were performed for caprolactin A to confirm the obtained results and understand the thermodynamic characteristics of the binding. It is hoped that the accomplished results could represent a positive step in the battle against COVID-19 through further in vitro and in vivo studies on the selected compounds.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Proteínas não Estruturais Virais/metabolismo
19.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164018

RESUMO

Bedaquiline is a novel adenosine triphosphate synthase inhibitor anti-tuberculosis drug. Bedaquiline belongs to the class of diarylquinolines, which are antituberculosis drugs that are quite different mechanistically from quinolines and flouroquinolines. The fact that relatively similar chemical drugs produce different mechanisms of action is still not widely understood. To enhance discrimination in favor of bedaquiline, a new approach using eight-score principal component analysis (PCA), provided by a ChemGPS-NP model, is proposed. PCA scores were calculated based on 35 + 1 different physicochemical properties and demonstrated clear differences when compared with other quinolines. The ChemGPS-NP model provided an exceptional 100 compounds nearest to bedaquiline from antituberculosis screening sets (with a cumulative Euclidian distance of 196.83), compared with the different 2Dsimilarity provided by Tanimoto methods (extended connective fingerprints and the Molecular ACCess System, showing 30% and 182% increases in cumulative Euclidian distance, respectively). Potentially similar compounds from publicly available antituberculosis compounds and Maybridge sets, based on bedaquiline's eight-dimensional similarity and different filtrations, were identified too.


Assuntos
Bases de Dados de Compostos Químicos , Diarilquinolinas , Análise de Componente Principal , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Análise por Conglomerados , Biologia Computacional , Diarilquinolinas/química , Diarilquinolinas/farmacologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Previsões/métodos , Humanos , Modelos Teóricos , Relação Quantitativa Estrutura-Atividade , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
20.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408684

RESUMO

As a continuation of our earlier work against SARS-CoV-2, seven FDA-approved drugs were designated as the best SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (2'OMTase) inhibitors through 3009 compounds. The in silico inhibitory potential of the examined compounds against SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (PDB ID: (6W4H) was conducted through a multi-step screening approach. At the beginning, molecular fingerprints experiment with SAM (S-Adenosylmethionine), the co-crystallized ligand of the targeted enzyme, unveiled the resemblance of 147 drugs. Then, a structural similarity experiment recommended 26 compounds. Therefore, the 26 compounds were docked against 2'OMTase to reveal the potential inhibitory effect of seven promising compounds (Protirelin, (1187), Calcium folinate (1913), Raltegravir (1995), Regadenoson (2176), Ertapenem (2396), Methylergometrine (2532), and Thiamine pyrophosphate hydrochloride (2612)). Out of the docked ligands, Ertapenem (2396) showed an ideal binding mode like that of the co-crystallized ligand (SAM). It occupied all sub-pockets of the active site and bound the crucial amino acids. Accordingly, some MD simulation experiments (RMSD, RMSF, Rg, SASA, and H-bonding) have been conducted for the 2'OMTase-Ertapenem complex over 100 ns. The performed MD experiments verified the correct binding mode of Ertapenem against 2'OMTase exhibiting low energy and optimal dynamics. Finally, MM-PBSA studies indicated that Ertapenem bonded advantageously to the targeted protein with a free energy value of -43 KJ/mol. Furthermore, the binding free energy analysis revealed the essential amino acids of 2'OMTase that served positively to the binding. The achieved results bring hope to find a treatment for COVID-19 via in vitro and in vivo studies for the pointed compounds.


Assuntos
Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Virais Reguladoras e Acessórias , Ertapenem/farmacologia , Ligantes , Metiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , S-Adenosilmetionina/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA