Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
FASEB J ; 38(7): e23594, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38573451

RESUMO

A high prevalence of osteoarthritis (OA) has been observed among individuals living at high altitudes, and hypobaric hypoxia (HH) can cause bone mass and strength deterioration. However, the effect of HH on OA remains unclear. In this study, we aimed to explore the impact of HH on OA and its potential mechanisms. A rat knee OA model was established by surgery, and the rats were bred in an HH chamber simulating a high-altitude environment. Micro-computed tomography (Micro-CT), histological analysis, and RNA sequencing were performed to evaluate the effects of HH on OA in vivo. A hypoxic co-culture model of osteoclasts and osteoblasts was also established to determine their effects on chondrogenesis in vitro. Cartilage degeneration significantly worsened in the HH-OA group compared to that in the normoxia-OA (N-OA) group, 4 weeks after surgery. Micro-CT analysis revealed more deteriorated bone mass in the HH-OA group than in the N-OA group. Decreased hypoxia levels in the cartilage and enhanced hypoxia levels in the subchondral bone were observed in the HH-OA group. Furthermore, chondrocytes cultured in a conditioned medium from the hypoxic co-culture model showed decreased anabolism and extracellular matrix compared to those in the normoxic model. RNA sequencing analysis of the subchondral bone indicated that the glycolytic signaling pathway was highly activated in the HH-OA group. HH-related OA progression was associated with alterations in the oxygen environment and bone remodeling in the subchondral zone, which provided new insights into the pathogenesis of OA.


Assuntos
Osteoartrite , Oxigênio , Animais , Ratos , Microtomografia por Raio-X , Hipóxia , Osteoartrite/etiologia , Remodelação Óssea
2.
FASEB J ; 38(1): e23347, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095503

RESUMO

The pathogenesis of osteoarthritis (OA) is still unclear. Fatty acid binding protein 4 (FABP4), a novel adipokine, has been found to play a role in OA. This study aimed to explore the role of NF-κB in FABP4-induced OA. In the in vivo study, four pairs of 12-week-old male FABP4 knockout (KO) and wild-type (WT) mice were included. The activation of NF-κB was assessed. In parallel, 24 6-week-old male C57/Bl6 mice were fed a high-fat diet (HFD) and randomly allocated to four groups: daily oral gavage with (1) PBS solution; (2) QNZ (NF-κB-specific inhibitor, 1 mg/kg/d); (3) BMS309403 (FABP4-specific inhibitor, 30 mg/kg/d); and (4) BMS309403 (30 mg/kg/d) + QNZ (1 mg/kg/d). The diet and treatment were sustained for 4 months. The knee joints were obtained to assess cartilage degradation, NF-κB activation, and subchondral bone sclerosis. In the in vitro study, a mouse chondrogenic cell line (ATDC5) was cultured. FABP4 was supplemented to stimulate chondrocytes, and the activation of NF-κB was investigated. In parallel, QNZ and NF-κB-specific siRNA were used to inhibit NF-κB. In vivo, the FABP4 WT mice had more significant NF-κB activation than the KO mice. Dual inhibition of FABP4 and NF-κB alleviated knee OA in mice. FABP4 has no significant effect on the activation of the JNK signaling pathway. In vitro, FABP4 directly activated NF-κB in chondrocytes. The use of QNZ and NF-κB-siRNA significantly alleviated the expression of catabolic markers of chondrocytes induced by FABP4. FABP4 induces chondrocyte degeneration by activating the NF-κB pathway.


Assuntos
NF-kappa B , Osteoartrite do Joelho , Animais , Masculino , Camundongos , Condrócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais
3.
Mol Cell Proteomics ; 22(8): 100606, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356495

RESUMO

Osteoarthritis (OA) is the most prevalent rheumatic pathology. However, OA is not simply a process of wear and tear affecting articular cartilage but rather a disease of the entire joint. One of the most common locations of OA is the knee. Knee tissues have been studied using molecular strategies, generating a large amount of complex data. As one of the goals of the Rheumatic and Autoimmune Diseases initiative of the Human Proteome Project, we applied a text-mining strategy to publicly available literature to collect relevant information and generate a systematically organized overview of the proteins most closely related to the different knee components. To this end, the PubPular literature-mining software was employed to identify protein-topic relationships and extract the most frequently cited proteins associated with the different knee joint components and OA. The text-mining approach searched over eight million articles in PubMed up to November 2022. Proteins associated with the six most representative knee components (articular cartilage, subchondral bone, synovial membrane, synovial fluid, meniscus, and cruciate ligament) were retrieved and ranked by their relevance to the tissue and OA. Gene ontology analyses showed the biological functions of these proteins. This study provided a systematic and prioritized description of knee-component proteins most frequently cited as associated with OA. The study also explored the relationship of these proteins to OA and identified the processes most relevant to proper knee function and OA pathophysiology.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Osteoartrite do Joelho/metabolismo
4.
J Proteome Res ; 23(2): 738-748, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38206579

RESUMO

Osteoarthritis (OA) is a prevalent debilitating whole-joint disorder. Currently, a growing number of proteomic studies have been performed to evaluate molecular biomarkers in several tissues from OA patients; however, little is known about the protein profiles in subchondral bone of OA. In this study, proteomic analysis was performed on subchondral bone from patients with OA to identify differentially expressed proteins (DEPs). Bioinformatics tools were used to further investigate these DEPs. Thereafter, DEPs were validated in the samples from patients with OA, as well as in bilateral ovariectomy-induced OA (OVX-OA) rats using immunohistochemistry. A comprehensive subchondral bone proteome profile of patients with OA was constructed. Additionally, biological information analysis showed that a majority of DEPs participated in the dysregulation of the complement and coagulation cascades. The validation experiments suggested that SerpinA5, the protein involved in the complement and coagulation cascades, was significantly increased in severely damaged subchondral bone of patients with OA compared to the control group. Furthermore, the increase of SerpinA5 in OVX-OA rats compared to control rats was also confirmed. Our results indicated that the dysregulation of coagulation and complement pathways plays a role in the progression of OA, and it provides a promising therapeutic target of OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Humanos , Feminino , Ratos , Animais , Proteômica , Osteoartrite/genética , Osso e Ossos/metabolismo , Biomarcadores , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Cartilagem Articular/metabolismo
5.
J Cell Mol Med ; 28(16): e70027, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159149

RESUMO

Ageing is the most prominent risk for osteoarthritis (OA) development. This study aimed to investigate the role of phosphoinositide-specific phospholipase Cγ (PLCγ) 1, previously linked to OA progression, in regulating age-related changes in articular cartilage and subchondral bone. d-galactose (d-Gal) was employed to treat chondrocytes from rats and mice or injected intraperitoneally into C57BL/6 mice. RTCA, qPCR, Western blot and immunohistochemistry assays were used to evaluate cell proliferation, matrix synthesis, senescence genes and senescence-associated secretory phenotype, along with PLCγ1 expression. Subchondral bone morphology was assessed through micro-CT. In mice with chondrocyte-specific Plcg1 deficiency (Plcg1flox/flox; Col2a1-CreERT), articular cartilage and subchondral bone were examined over different survival periods. Our results showed that d-Gal induced chondrocyte senescence, expedited articular cartilage ageing and caused subchondral bone abnormalities. In d-Gal-induced chondrocytes, diminished PLCγ1 expression was observed, and its further inhibition by U73122 exacerbated chondrocyte senescence. Plcg1flox/flox; Col2a1-CreERT mice exhibited more pronounced age-related changes in articular cartilage and subchondral bone compared to Plcg1flox/flox mice. Therefore, not only does d-Gal induce senescence in chondrocytes and age-related changes in articular cartilage and subchondral bone, as well as diminished PLCγ1 expression, but PLCγ1 deficiency in chondrocytes may also accelerate age-related changes in articular cartilage and subchondral bone. PLCγ1 may be a promising therapeutic target for mitigating age-related changes in joint tissue.


Assuntos
Cartilagem Articular , Condrócitos , Camundongos Endogâmicos C57BL , Fosfolipase C gama , Animais , Condrócitos/metabolismo , Fosfolipase C gama/metabolismo , Fosfolipase C gama/genética , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Camundongos , Envelhecimento/metabolismo , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia , Senescência Celular , Ratos , Estrenos/farmacologia , Galactose/metabolismo , Proliferação de Células , Masculino , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osso e Ossos/diagnóstico por imagem , Pirrolidinonas/farmacologia
6.
Clin Immunol ; 260: 109904, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262526

RESUMO

Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.


Assuntos
Dinoprostona , Osteoartrite , Humanos , Celecoxib/uso terapêutico , Osteoartrite/patologia , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico
7.
Osteoarthritis Cartilage ; 32(2): 148-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944663

RESUMO

Great progress continues to be made in our understanding of the multiple facets of osteoarthritis (OA) biology. Here, we review the major advances in this field and progress towards therapy development over the past year, highlighting a selection of relevant published literature from a PubMed search covering the year from the end of April 2022 to the end of April 2023. The selected articles have been arranged in themes. These include 1) molecular regulation of articular cartilage and implications for OA, 2) mechanisms of subchondral bone remodelling, 3) role of synovium and inflammation, 4) role of age-related changes including cartilage matrix stiffening, cellular senescence, mitochondrial dysfunction, metabolic dysfunction, and impaired autophagy, and 5) peripheral mechanisms of OA pain. Progress in the understanding of the cellular and molecular mechanisms responsible for the multiple aspects of OA biology is unravelling novel therapeutic targets for disease modification.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Osteoartrite/metabolismo , Inflamação/metabolismo , Cartilagem Articular/metabolismo , Osso e Ossos/metabolismo , Biologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-39153568

RESUMO

OBJECTIVE: To evaluate the humeral head bone volume of patients with cuff tear arthropathy (CTA) and examine the therapeutic effect of zoledronate in a rat modified model of CTA (mCTA). DESIGN: The bone mass in patients with CTA was measured using Hounsfield units from CT images. The mCTA was induced by transecting the rotator cuff, biceps brachii tendon, and superior half of the joint capsule in adult rat shoulders. A single subcutaneous injection of zoledronate was followed by bone histomorphometry and immunohistochemistry of the humeral head, as well as the Murine Shoulder Arthritis Score (MSAS) assessment. RESULTS: The humeral head bone volume was decreased in patients with CTA. In the mCTA model, M1 macrophages were increased in the synovium and were decreased by zoledronate treatment. The increased expressions of TNF-α, IL-1ß and IL-6 in mCTA synovium and articular cartilage were suppressed in the zoledronate-treated mCTA group. The expression of catabolic enzymes in the articular cartilage and MSAS showed similar results. The zoledronate-treated mCTA group showed a decreased subchondral bone collapse with a decreased RANKL/OPG expression ratio and a suppressed number of osteoclasts compared with the control mCTA group. The enhanced expressions of HMGB1 and S100A9 in the mCTA shoulders were eliminated in the zoledronate-treated mCTA group. CONCLUSIONS: The humeral head subchondral bone was decreased in patients with CTA. In the mCTA model, the collapse and osteoarthritic changes were prevented by zoledronate administration. Zoledronate seemed to suppress the number of M1 macrophages in the synovium and osteoclasts in the subchondral bone.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38876436

RESUMO

OBJECTIVE: To categorize the temporal progression of subchondral bone alterations induced by compromising meniscus integrity in mouse and rat models of knee osteoarthritis (OA). METHOD: Scoping review of investigations reporting subchondral bone changes with appropriate negative controls in the different mouse and rat models of OA induced by compromising meniscus integrity. RESULTS: The available literature provides appropriate temporal detail on subchondral changes in these models, covering the entire spectrum of OA with an emphasis on early and mid-term time points. Microstructural changes of the subarticular spongiosa are comprehensively described; those of the subchondral bone plate are not. In mouse models, global subchondral bone alterations are unidirectional, involving an advancing sclerosis of the trabecular structure over time. In rats, biphasic subchondral bone alterations begin with an osteopenic degeneration and loss of subchondral trabeculae, progressing to a late sclerosis of the entire subchondral bone. Rat models, independently from the applied technique, relatively faithfully mirror the early bone loss detected in larger animals, and the late subchondral bone sclerosis observed in human advanced OA. CONCLUSION: Mice and rats allow us to study the microstructural consequences of compromising meniscus integrity at high temporal detail. Thickening of the subchondral bone plate, an early loss of thinner subarticular trabecular elements, followed by a subsequent sclerosis of the entire subchondral bone are all important and reliable hallmarks that occur in parallel with the advancing articular cartilage degeneration. Thoughtful decisions on the study design, laterality, selection of controls and volumes of interest are crucial to obtain meaningful data.

10.
Osteoarthritis Cartilage ; 32(5): 535-547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403152

RESUMO

OBJECTIVE: The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD: Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS: In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION: Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY: All data are available in the main text or the supplementary materials.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite do Quadril , Humanos , Osteoblastos , Osteócitos
11.
Osteoarthritis Cartilage ; 32(8): 909-920, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697509

RESUMO

OBJECTIVE: People who sustain joint injuries such as anterior cruciate ligament (ACL) rupture often develop post-traumatic osteoarthritis (PTOA). In human patients, ACL injuries are often treated with ACL reconstruction. However, it is still unclear how effective joint restabilization is for reducing the progression of PTOA. The goal of this study was to determine how surgical restabilization of a mouse knee joint following non-invasive ACL injury affects PTOA progression. DESIGN: In this study, 187 mice were subjected to non-invasive ACL injury or no injury. After injury, mice underwent restabilization surgery, sham surgery, or no surgery. Mice were then euthanized on day 14 or day 49 after injury/surgery. Functional analyses were performed at multiple time points to assess voluntary movement, gait, and pain. Knees were analyzed ex vivo with micro-computed tomography, RT-PCR, and whole-joint histology to assess articular cartilage degeneration, synovitis, and osteophyte formation. RESULTS: Both ACL injury and surgery resulted in loss of epiphyseal trabecular bone (-27-32%) and reduced voluntary movement at early time points. Joint restabilization successfully lowered OA score (-78% relative to injured at day 14, p < 0.0001), and synovitis scores (-37% relative to injured at day 14, p = 0.042), and diminished the formation of chondrophytes/osteophytes (-97% relative to injured at day 14, p < 0.001, -78% at day 49, p < 0.001). CONCLUSIONS: This study confirmed that surgical knee restabilization was effective at reducing articular cartilage degeneration and diminishing chondrophyte/osteophyte formation after ACL injury in mice, suggesting that these processes are largely driven by joint instability in this mouse model. However, restabilization was not able to mitigate the early inflammatory response and the loss of epiphyseal trabecular bone, indicating that these processes are independent of joint instability.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Progressão da Doença , Osteoartrite do Joelho , Animais , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/complicações , Camundongos , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/fisiopatologia , Reconstrução do Ligamento Cruzado Anterior/métodos , Cartilagem Articular/patologia , Microtomografia por Raio-X , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Masculino , Sinovite/etiologia , Sinovite/cirurgia , Osteófito/etiologia
12.
J Anat ; 245(1): 58-69, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38481117

RESUMO

Bone microdamage is common at subchondral bone (SCB) sites subjected to repeated high rate and magnitude of loading in the limbs of athletic animals and humans. Microdamage can affect the biomechanical behaviour of bone under physiological loading conditions. To understand the effects of microdamage on the mechanical properties of SCB, it is important to be able to quantify it. The extent of SCB microdamage had been previously estimated qualitatively using plain microcomputed tomography (µCT) and a radiocontrast quantification method has been used for trabecular bone but this method may not be directly applicable to SCB due to differences in bone structure. In the current study, SCB microdamage detection using lead uranyl acetate (LUA) and quantification by contrast-enhanced µCT and backscattered scanning electron microscopy (SEM) imaging techniques were assessed to determine the specificity of the labels to microdamage and the accuracy of damaged bone volume metrices. SCB specimens from the metacarpus of racehorses, with the hyaline articular cartilage (HAC) removed, were grouped into two with one group subjected to ex vivo uniaxial compression loading to create experimental bone damage. The other group was not loaded to preserve the pre-existing in vivo propagated bone microdamage. A subset of each group was stained with LUA using an established or a modified protocol to determine label penetration into SCB. The µCT and SEM images of stained specimens showed that penetration of LUA into the SCB was better using the modified protocol, and this protocol was repeated in SCB specimens with intact hyaline articular cartilage. The percentage of total label localised to bone microdamage was determined on SEM images, and the estimated labelled bone volume determined by µCT in SCB groups was compared. Label was present around diffuse and linear microdamage as well as oblique linear microcracks present at the articular surface, except in microcracks with high-density mineral infills. Bone surfaces lining pores with recent mineralisation were also labelled. Labelled bone volume fraction (LV/BV) estimated by µCT was higher in the absence of HAC. At least 50% of total labels were localised to bone microdamage when the bone area fraction (B.Ar/T.Ar) of the SCB was greater than 0.85 but less than 30% when B.Ar/T.Ar of the SCB was less than 0.85. To adjust for LUA labels on bone surfaces, a measure of the LV/BV corrected for bone surface area (LV/BV BS-1) was used to quantify damaged SCB. In conclusion, removal of HAC and using a modified labelling protocol effectively stained damaged SCB of the metacarpus of racehorses and represents a technique useful for quantifying microdamage in SCB. This method can facilitate future investigations of the effects of microdamage on joint physiology.


Assuntos
Microtomografia por Raio-X , Animais , Microtomografia por Raio-X/métodos , Cavalos , Microscopia Eletrônica de Varredura , Meios de Contraste , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia
13.
Stem Cells ; 41(5): 482-492, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702547

RESUMO

Osteoarthritis (OA) is an entire joint disease with pathological alteration in both articular cartilage and subchondral bone. It has been recognized recently the association between metabolic syndrome and OA, particularly glucose metabolism in regulation of articular cartilage homeostasis and joint integrity. Whereas the role of glucose metabolism in subchondral bone sclerosis remains largely unknown during pathogenesis of OA. Consistent with common OA features, we observed subchondral bone sclerosis and abnormal bone remodeling in human OA joints and murine OA joints as reflected by hyperactive bone resorption and overall bone formation which was measured via dynamic histomorphometry. Osx-CreER;tdTomato mice also displayed the similar overall bone formation under injury-induced OA condition. Immunohistochemistry further revealed increased IL-1ß expression in human and murine OA subchondral bone. Given the inflammatory environment in joints under OA condition, we treated MC3T3-E1 cell, a pre-osteoblast cell line, with IL-1ß in this study and demonstrated that IL-1ß treatment could stimulate the cell osteogenic differentiation and meanwhile upregulate glycolysis and oxidative phosphorylation in cell cultures. More importantly, intraperitoneal injection of 2-deoxy-D-glucose (2-DG) and oligomycin (OGM), respectively, suppressed the subchondral bone glycolysis and oxidative phosphorylation in mice. Consequently, 2-DG and OGM treatment attenuated abnormal osteoblast differentiation and protected against aberrant bone formation in subchondral bone and articular cartilage degradation in wildtype mice following with joint injury. Collectively, these data strongly suggest glycolysis and oxidative may serve as important therapeutic targets for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Osteogênese , Esclerose/complicações , Esclerose/metabolismo , Esclerose/patologia , Osso e Ossos/metabolismo , Cartilagem Articular/patologia , Inflamação/patologia
14.
Calcif Tissue Int ; 115(1): 78-84, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753025

RESUMO

Subchondral bone remodeling, mediated by osteocytes within the lacuno-canalicular network, plays a crucial role in osteoarthritis (OA) progression. Following cell death, lacunae preserve integrity, offering insights into bone remodeling mechanisms. Limited and controversial data on osteocyte lacuna morphology in OA result from small sample sizes and two-dimensional (2D) techniques that have been used thus far. This study aimed to quantify three-dimensional (3D) osteocyte lacunar characteristics at well-defined tibial plateau locations, known to be differently affected by OA. Specifically, 11 tibial plateaus were obtained from end-stage knee-OA patients with varus deformity. Each plateau provided one sample from the less affected lateral compartment and two samples from the medial compartment, at minimum and maximum bone volume fraction (BV/TV) locations. High-resolution desktop micro-computed tomography (micro-CT) at 0.7 µm voxel resolution imaged the 33 samples. Lacuna number density (Lc.N/BV) and lacuna volume density (Lc.TV/BV) were significantly lower (p < 0.02) in samples from the medial side with maximum BV/TV compared to lateral side samples. In the medial compartment at maximum local BV/TV, mean lacuna volume (Lc.V), total lacuna volume (Lc.TV), and Lc.TV/BV were significantly (p < 0.001) lower than in the region with minimum BV/TV. Lc.N/BV was also significantly lower (p < 0.02) at the maximum local BV/TV location compared to the region with minimum BV/TV. Our findings suggest that subchondral bone lacunae adapt to the changing loads in end-stage OA.


Assuntos
Remodelação Óssea , Osteoartrite do Joelho , Osteócitos , Tíbia , Microtomografia por Raio-X , Humanos , Osteócitos/patologia , Tíbia/patologia , Tíbia/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/diagnóstico por imagem , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Microtomografia por Raio-X/métodos , Remodelação Óssea/fisiologia
15.
J Biomech Eng ; 146(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792487

RESUMO

During pregnancy and breastfeeding, women undergo hormonal fluctuations required for fetal development, parturition, and infant growth. These changes have secondary consequences on the maternal musculoskeletal system, increasing the risk for joint pain and osteoporosis. Though hormone levels return to prepregnancy levels postpartum, women may experience lasting musculoskeletal pain. Sex disparities exist in the prevalence of musculoskeletal disorders, but it remains unclear how reproductive history may impact sex differences. Specifically, the effects of both reproductive history and sex on the rotator cuff have not been studied. Pregnancy and lactation affect bone microstructure, suggesting possible impairments at the enthesis of rotator cuff tendons, where tears commonly occur. Therefore, our objective was to evaluate how reproductive history affects sex differences of the supraspinatus tendon and proximal humerus using male, virgin female, and female rats with a history of reproduction (referred to as reproductive females). We hypothesized tendon mechanical properties and humeral bone microstructure would be inferior in reproductive females compared to virgin females. Results showed sex differences independent of reproductive history, including greater tendon midsubstance modulus but lower subchondral bone mineral density (BMD) in females. When considering reproductive history, reproductive rats exhibited reduced tendon insertion site modulus and trabecular bone micro-architecture compared to virgin females with no differences from males. Overall, our study identified long-term changes in supraspinatus tendon mechanical and humeral trabecular bone properties that result following pregnancy and lactation, highlighting the importance of considering reproductive history in investigations of sex differences in the physiology and pathology of rotator cuff injuries.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Humanos , Gravidez , Ratos , Feminino , Masculino , Animais , Manguito Rotador/patologia , Aleitamento Materno , Fenômenos Biomecânicos , Lesões do Manguito Rotador/patologia , Reprodução , Tendões , Úmero , Lactação
16.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 499-512, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38439665

RESUMO

Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite , Humanos , Osteoclastos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea/fisiologia , Cartilagem Articular/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443201

RESUMO

Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.


Assuntos
Tecido Adiposo/metabolismo , Lipodistrofia/metabolismo , Osteoartrite do Joelho/metabolismo , Tecido Adiposo/fisiopatologia , Tecido Adiposo/transplante , Adiposidade , Animais , Peso Corporal , Cartilagem/patologia , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças/complicações , Suscetibilidade a Doenças/metabolismo , Feminino , Fibroblastos/metabolismo , Hiperplasia/complicações , Inflamação/metabolismo , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Lipodistrofia/fisiopatologia , Locomoção , Masculino , Camundongos , Força Muscular , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/prevenção & controle , Dor/complicações , Comunicação Parácrina/fisiologia
18.
BMC Musculoskelet Disord ; 25(1): 50, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212780

RESUMO

BACKGROUND: Individuals with high systemic bone mineral density (BMD) may have an increased risk of incident knee osteoarthritis (OA). Besides that, radiographic osteophytes are strongly associated with BMD. Because of these reasons, the aim of the study was to investigate the possible association between radiological subchondral bone cyst (SBC) grade and systemic BMD and vitamin D status in the postmenopausal female patients with knee OA in a crosss-sectional study. METHODS: This study included of 48 osteoporosis treatment-free postmenopausal patients diagnosed with symptomatic medial compartment knee OA. BMD analysis was performed using dual-energy X-ray absorptiometry (DXA) and serum vitamin D levels were measured after recording patients' findings. Each knee was scanned using computed tomography (CT), and categorical SBC scores were graded for the medial and lateral tibiofemoral (TF) and patellofemoral (PF) compartments and further calculated as compartmental total, total TF and grand total of both TF compartments. SBC scores were analysed with correlation analysis. RESULTS: The patient population was characterized by radiographic joint space narrowing, obesity and low vitamin D status. Median medial total and grand total TF SBC scores were significantly different between the patient groups according to the Kellgren-Lawrence (KL) radiographic grading (p = 0.006 and p = 0.007, respectively). There were no correlations between femoral BMD values and SBC scores. However, positive correlations were detected significantly between L1 - 4 DXA values and TF SBC scores, but not with PF SBC scores (p = 0.005 for the correlation between L1 - 4 BMD and medial compartments total TF SBC score, p = 0.021 for the correlation between L1 - 4 BMD and grand total TF SBC score). No significant correlations were found with Vitamin D levels. CONCLUSIONS: Development of TF OA high-grade SBCs may be linked to systemic bone mass as represented by trabecular bone-rich lumbar vertebrae. The relationship might point to the importance of bone stiffness as an acting factor in knee OA possibly with mechanical energy transfer to the joint.


Assuntos
Cistos Ósseos , Osteoartrite do Joelho , Humanos , Feminino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/epidemiologia , Densidade Óssea , Absorciometria de Fóton/métodos , Estudos Transversais , Pós-Menopausa , Articulação do Joelho/diagnóstico por imagem , Cistos Ósseos/complicações , Cistos Ósseos/diagnóstico por imagem , Vitamina D
19.
Phytother Res ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649260

RESUMO

Knee osteoarthritis (KOA) is a prevalent degenerative joint disease that is primarily managed by improving the destroyed cartilage and reversing subchondral bone remodeling. Total glucosides of white paeony (TGP) capsule primarily contains extracts from the white peony root and has been shown to have various pharmacological effects, but its role in KOA still requires comprehensive evaluation. In this study, we aimed to investigate the protective effect of TGP on knee cartilage and subchondral bone, as well as elucidate the underlying molecular mechanisms. The effect of TGP on KOA progression was evaluated in the destabilization of the medial meniscus (DMM)-induced KOA model of mouse and interleukin (IL)-1ß-induced KOA model of primary mouse chondrocytes. In vivo and in vitro experiments demonstrated that TGP had a protective effect on the cartilage. Treatment with TGP could induce the synthesis of critical elements in the cartilage extracellular matrix and downregulate the synthesis of degrading enzymes in the extracellular matrix. Regarding the underlying mechanisms, TGP inhibited the phosphorylation and nuclear translocation of p65 by regulating the nuclear factor-kappa B (NF-κB) signaling pathway. In addition, TGP could reduce the secretion of IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α). Moreover, it has a sustained effect on coupled subchondral bone remodeling through regulation of the OPG/RANKL/RANK pathway. In conclusion, TGP may protect articular cartilage by downregulating the NF-κB signaling pathway and may support coupled subchondral bone remodeling by regulating OPG/RANKL/RANK signaling pathway in the DMM-induced KOA model of mouse, suggesting a new therapeutic potential for KOA treatment.

20.
BMC Oral Health ; 24(1): 569, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745274

RESUMO

BACKGROUND: Extracellular matrix (ECM) protein malfunction or defect may lead to temporomandibular joint osteoarthritis (TMJ OA). Dentin sialophophoprotein (DSPP) is a mandibular condylar cartilage ECM protein, and its deletion impacted cell proliferation and other extracellular matrix alterations of postnatal condylar cartilage. However, it remains unclear if long-term loss of function of DSPP leads to TMJ OA. The study aimed to test the hypothesis that long-term haploinsufficiency of DSPP causes TMJ OA. MATERIALS AND METHODS: To determine whether Dspp+/- mice exhibit TMJ OA but no severe tooth defects, mandibles of wild-type (WT), Dspp+/-, and Dspp homozygous (Dspp-/-) mice were analyzed by Micro-computed tomography (micro-CT). To characterize the progression and possible mechanisms of osteoarthritic degeneration over time in Dspp+/- mice over time, condyles of Dspp+/- and WT mice were analyzed radiologically, histologically, and immunohistochemically. RESULTS: Micro-CT and histomorphometric analyses revealed that Dspp+/- and Dspp-/- mice had significantly lower subchondral bone mass, bone volume fraction, bone mineral density, and trabecular thickness compared to WT mice at 12 months. Interestingly, in contrast to Dspp-/- mice which exhibited tooth loss, Dspp+/- mice had minor tooth defects. RNA sequencing data showed that haplodeficency of DSPP affects the biological process of ossification and osteoclast differentiation. Additionally, histological analysis showed that Dspp+/- mice had condylar cartilage fissures, reduced cartilage thickness, decreased articular cell numbers and severe subchondral bone cavities, and with signs that were exaggerated with age. Radiographic data showed an increase in subchondral osteoporosis up to 18 months and osteophyte formation at 21 months. Moreover, Dspp+/- mice showed increased distribution of osteoclasts in the subchondral bone and increased expression of MMP2, IL-6, FN-1, and TLR4 in the mandibular condylar cartilage. CONCLUSIONS: Dspp+/- mice exhibit TMJ OA in a time-dependent manner, with lesions in the mandibular condyle attributed to hypomineralization of subchondral bone and breakdown of the mandibular condylar cartilage, accompanied by upregulation of inflammatory markers.


Assuntos
Proteínas da Matriz Extracelular , Osteoartrite , Fosfoproteínas , Sialoglicoproteínas , Transtornos da Articulação Temporomandibular , Animais , Camundongos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Côndilo Mandibular/patologia , Côndilo Mandibular/diagnóstico por imagem , Osteoartrite/patologia , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Articulação Temporomandibular/patologia , Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/etiologia , Transtornos da Articulação Temporomandibular/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA