RESUMO
The filamentous growth mode of fungi, with its modular design, facilitates fungal adaptation to stresses they encounter in diverse terrestrial and anthropogenic environments. Surface growth conditions elicit diverse morphological responses in filamentous fungi, particularly demonstrating the remarkable adaptability of mycelial systems to metal- and mineral-rich environments. These responses are coupled with fungal biogeochemical activity and can ameliorate hostile conditions. A tessellated agar tile system, mimicking natural environmental heterogeneity, revealed negative chemotropism to toxic metals, distinct extreme growth strategies, such as phalanx and guerrilla movements and transitions between them, and the formation of aggregated re-allocation structures (strands, cords, synnemata). Other systems showed intrahyphal growth, intense biomineralization, and extracellular hair-like structures. Studies on submerged mycelial growth, using the thermophilic fungus Thielavia terrestris as an example, provided mechanistic insights into the morphogenesis of two extreme forms of fungal submerged culture-pelleted and dispersed growth. It was found that the development of fungal pellets was related to fungal adaptation to unfavorable stressful conditions. The two key elements affecting morphogenesis leading to the formation of either pelleted or dispersed growth were found to be (1) a lag phase (or conidia swelling stage) as a specific period of fungal morphogenesis when a certain growth form is programmed in response to morphogenic stressors, and (2) cAMP as a secondary messenger of cell signaling, defining the implementation of the particular growth strategy. These findings can contribute to knowledge of fungal-based biotechnologies, providing a means for controllable industrial processes at both morphological and physiological levels.
Assuntos
Fungos , Fungos/crescimento & desenvolvimento , Fungos/fisiologia , Estresse Fisiológico , Adaptação Fisiológica , Micélio/crescimento & desenvolvimentoRESUMO
AIMS: Investigation of the influence of cultivation time and sea buckthorn press cake (Hippophaë rhamnoides) dosage on mycelium yield of Inonotus obliquus in submerged cultivation and on the yield, monomer composition, and macromolecular properties of the exopolysaccharides (EPS) from culture media and intracellular polysaccharides (IPS) extracted from mycelia. METHODS AND RESULTS: Supplementation at 5 g l-1 combined with cultivation time of 250 h granted highest yield increase in mycelia (by 122%). The supplementation reduced extraction yield and decreased the molecular weight of the main IPS population. The supplementation increased production and molecular weight of EPS. The relative content of arabinose and rhamnose in EPS positively correlated with dosage of the press cake. The press cake supplementation increased the content of galacturonic acid in IPS, but not in EPS. CONCLUSION: Sea buckthorn press cake is a food industry fibrous side stream with high oil content. It increases the cultivation yield of Inonotus obliquus mycelium and influences the produced polysaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: Mycelium is a resource of bioactive polysaccharides, attracting the interest of nutraceutical companies. Sea buckthorn press cake is a promising supplement for increasing mycelium production. The utilization of this agricultural side stream would therefore favour circular economy.
Assuntos
Basidiomycota/metabolismo , Hippophae , Polissacarídeos/metabolismo , Meios de Cultura , Microbiologia Industrial , Inonotus , MicélioRESUMO
Azaphilones are a class of fungal pigments, reported mostly in association with Monascus species. In Asian countries, they are used as food colourants under the name of "red yeast rice" and their production process is well described. One major limitation of current production techniques of azaphilones is that they always occur in a mixture of yellow, orange and red pigments. These mixtures are difficult to control and to quantify. This study has established a controlled and reproducible cultivation protocol to selectively tailor production of individual pigments during a submerged fermentation using another fungal species capable of producing azaphilone pigments, Talaromyces atroroseus, using single amino acids as the sole nitrogen source. The produced azaphilone pigments are called atrorosins and are amino acid derivatives of the known azaphilone pigment Penicillium purpurogenum-orange (PP-O), with the amino acid used as nitrogen source incorporated into the core skeleton of the azaphilone. This strategy was successfully demonstrated using 18 proteinogenic amino acids and the non-proteinogenic amino acid ornithine. Two cultivation methods for production of the pure serine derivative (atrorosin S) have been further developed, with yields of 0.9 g/L being obtained. Yielding pure atrorosins through switching from KNO3 to single amino acids as nitrogen source allows for considerably easier downstream processing and thus further enhances the commercial relevance of azaphilone producing fungal cell factories.
Assuntos
Aminoácidos/metabolismo , Meios de Cultura/química , Pigmentos Biológicos/biossíntese , Talaromyces/crescimento & desenvolvimento , Talaromyces/metabolismo , Benzopiranos , Fermentação , Nitrogênio/metabolismoRESUMO
The goal of the study was to compare the production of secondary metabolites by Aspergillus terreus ATCC 20542 under the conditions of submerged mono- and co-cultivation. The suggested experimental scheme encompassed a diverse set of co-culture initiation strategies differing mostly with respect to the development stage of tested fungal strains at the moment of their confrontation. Three species of filamentous fungi exhibiting distinct patterns of morphological evolution under submerged conditions, namely Penicillium rubens, Chaetomium globosum, and Mucor racemosus, were selected as the co-cultivation partners of A. terreus. The choice of the co-cultivated species and the approach of co-culture triggering noticeably influenced the levels of lovastatin (mevinolinic acid), (+)-geodin, asterric acid, and butyrolactone I in the broth. Even though the evaluated co-cultures did not lead to the increased titers of lovastatin relative to standard monocultures, the biosynthesis of the remaining three metabolites was either enhanced or inhibited depending on the experimental variant. The production of butyrolactone I turned out to be particularly affected by the presence of C. globosum. Interestingly, in the A. terreus/C. globosum co-cultures, the decrease of lovastatin concentration was recorded. According to the most probable scenario, lovastatin was in this case converted to monacolin J acid, a polyketide molecule that may be applied as a substrate for the synthesis of statin drugs. The study revealed that the spores of two distinct fungal species, namely A. terreus and C. globosum, co-agglomerate under submerged conditions to form pellets. Finally, the biosynthetic performance of co-cultures involving four fungal species was evaluated.
Assuntos
Aspergillus/metabolismo , Reatores Biológicos , Lovastatina/biossíntese , Metabolismo Secundário , Biomassa , Técnicas de Cocultura , Cinética , Técnicas Microbiológicas , Naftalenos/metabolismo , Penicillium/metabolismo , Esporos/fisiologiaRESUMO
The industrial production of cellulolytic enzymes is dominated by the filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina). In order to develop optimal enzymatic cocktail, it is of importance to understand the natural regulation of the enzyme profile as response to the growth substrate. The influence of the complexity of cellulose on enzyme production by the microorganisms is not understood. In the present study we attempted to understand how different physical and structural properties of cellulose-rich substrates affected the levels and profiles of extracellular enzymes produced by T. reesei. Enzyme production by T. reesei Rut C-30 was studied in submerged cultures on five different cellulose-rich substrates, namely, commercial cellulose Avicel® and industrial-like cellulosic pulp substrates which consist mainly of cellulose, but also contain residual hemicellulose and lignin. In order to evaluate the hydrolysis of the substrates by the fungal enzymes, the spatial polymer distributions were characterised by cross-polarisation magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS (13)C-NMR) in combination with spectral fitting. Proteins in culture supernatants at early and late stages of enzyme production were labeled by Tandem Mass Tags (TMT) and protein profiles were analysed by liquid chromatography-tandem mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD001304. In total 124 proteins were identified and quantified in the culture supernatants, including cellulases, hemicellulases, other glycoside hydrolases, lignin-degrading enzymes, auxiliary activity 9 (AA9) family (formerly GH61), supporting activities of proteins and enzymes acting on cellulose, proteases, intracellular proteins and several hypothetical proteins. Surprisingly, substantial differences in the enzyme profiles were found even though there were minor differences in the chemical composition between the cellulose-rich substrates.
Assuntos
Celulases/metabolismo , Celulose/metabolismo , Trichoderma/citologia , Trichoderma/enzimologia , Cromatografia Líquida , Meios de Cultura/química , Proteínas Fúngicas/análise , Hidrólise , Espectroscopia de Ressonância Magnética , Microscopia , Proteoma/análise , Espectrometria de Massas em Tandem , Trichoderma/crescimento & desenvolvimentoRESUMO
Amidst worsening climate change, drought stress imperils global agriculture, jeopardizing crop yields and food security, thereby necessitating the urgent exploration of sustainable methods like biopriming for the harnessing of beneficial microorganisms to bolster plant resilience. Recent research has revealed diverse biological compounds with versatile applications produced by Schizophyllum commune, rendering this fungus as a promising contender for biopriming applications. For the first time, this study aimed to investigate the potential of S. commune exo- (EPSH) and intra-polysaccharides (IPSH) isolated from two strains-Italian (ITA) and Serbian (SRB)-under submerged cultivation to enhance the resilience of Pisum sativum L. seeds through the biopriming technique. Testing of the seed quality for the bioprimed, hydroprimed, and unprimed seeds was conducted using a germination test, under optimal and drought conditions, while characterization of the PSHs included FTIR analysis, microanalysis, and determination of total protein content (TPC). The FTIR spectra of EPSH and IPSH were very similar but revealed the impurities, while microanalysis and TPC confirmed a different presence of proteins in the isolated PSHs. In optimal conditions, the IPSH SRB increased germination energy by 5.50% compared to the control; however, the highest percentage of germination (94.70%) was shown after biopriming with the PSH isolated from the ITA strain. Additionally, all assessed treatments resulted in a boost in seedling growth and biomass accumulation, where the ITA strain demonstrated greater effectiveness in optimal conditions, while the SRB strain showed superiority in drought conditions. The drought tolerance indices increased significantly in response to all examined treatments during the drought, with EPSH ITA (23.00%) and EPSH SRB (24.00%) demonstrating the greatest effects. Results of this preliminary study demonstrate the positive effect of isolated PSH, indicating their potential as biopriming agents and offering insights into novel strategies for agricultural resilience.
RESUMO
The demand for cheap, healthy, and sustainable alternative protein sources has turned research interest into microbial proteins. Mycoproteins prevail due to their quite balanced amino acid profile, low carbon footprint and high sustainability potential. The goal of this research was to investigate the capability of Pleurotus ostreatus to metabolize the main sugars of agro-industrial side streams, such as aspen wood chips hydrolysate, to produce high-value protein with low cost. Our results indicate that P. ostreatus LGAM 1123 could be cultivated both in a C-6 (glucose)- and C-5(xylose)-sugar-containing medium for mycoprotein production. A mixture of glucose and xylose was found to be ideal for biomass production with high protein content and rich amino acid profile. P. ostreatus LGAM 1123 cultivation in a 4 L stirred-tank bioreactor using aspen hydrolysate was achieved with 25.0 ± 3.4 g L-1 biomass production, 1.8 ± 0.4 d-1 specific growth rate and a protein yield of 54.5 ± 0.5% (g/100 g sugars). PCA analysis of the amino acids revealed a strong correlation between the amino acid composition of the protein produced and the ratios of glucose and xylose in the culture medium. The production of high-nutrient mycoprotein by submerged fermentation of the edible fungus P. ostreatus using agro-industrial hydrolysates is a promising bioprocess in the food and feed industry.
RESUMO
Abiotic elicitation, a well-known strategy in mushroom biotechnology, promotes increased accumulation of secondary metabolites in mycelial cultures. The study aimed the effects of methyl jasmonate (MeJA) on the production of triterpenes in submerged cultures of Ganoderma applanatum. Further, the study evaluated the cytotoxic activity of the extract corresponding to the optimal elicitation variant in selected human cancer cell lines as well as the selectivity against normal cells. MeJA was added on days 1, 4, 6, and 8 in the 10-day growth cycle at concentrations of 10, 50, 100, 150, and 200 µM MeJA. The HPLC-DAD was used to analyze the triterpenes. The cytotoxic activity was tested using the MTTFc assay in grouped panels of skin, prostate, and gastrointestinal cancer cells. The results of the quantitative analyses confirmed the stimulating effect of MeJA on the production of ganoderic acid A and ganoderic acid C. The greatest increase in total triterpenes was found on day 6 of the culture cycle compared to the control group-with the concentration of MeJA-150 µM. Compared to the control samples, mycelial culture extract after the most productive elicitation variant showed significant cytotoxic activity against prostate cancer cells and moderate effects on melanoma cells. Ganoderma applanatum mycelial cultures can be proposed as a model to study the dynamics of the accumulation of compounds with therapeutic values through abiotic elicitation.
RESUMO
Great interest for large-scale production of medicinal mushroom biomass and various pharmaceutically active compounds production dictates the development of comprehensive technologies. Solid state and submerged cultivations in bioreactors represent the most promising technologies for fast and large amount production of medicinal fungi biomass and pharmaceutically active products for human and veterinary need. There are many stages from shaking culture studies to large-scale industrial production. Pilot-scale studies represent the bridge and the balance between the gap of laboratory and industrial scale. Therefore it is not a surprise that most of pilot-scale results and experiences remain uncovered industrial secrets. This chapter is an overview of available engineering achievements in submerged and solid-state cultivation experiences in pilot-scale bioreactors.
Assuntos
Agaricales , Humanos , Biomassa , Reatores Biológicos/microbiologiaRESUMO
Response surface methodology (central composite design of experiments) was employed to simultaneously optimize enzyme production and productivities of two ligninolytic enzymes produced by Ceriporiopsis subvermispora. Concentrations of glucose, ammonium tartrate and Polysorbate 80 were varied to establish the optimal composition of liquid media (OLM), where the highest experimentally obtained activities and productivities were 41 U L(-1) and 16 U L(-1) day(-1) for laccase (Lac), and 193 U L(-1) and 80 U L(-1) day(-1) for manganese peroxidase (MnP). Considering culture growth in OLM on various types of immobilization support, the best results were obtained with 1 cm beech wood cubes (BWCM). Enzyme activities in culture filtrate were 152 U L(-1) for Lac and 58 U L(-1) for MnP, since the chemical composition of this immobilization material induced higher Lac activity. Lower enzyme activities were obtained with polyurethane foam. Culture filtrates of OLM and BWCM were applied for dye decolorization. Remazol Brilliant Blue R (RBBR) was decolorized faster and more efficiently than Copper(II)phthalocyanine (CuP) with BWCM (80% and 60%), since Lac played a crucial role. Decolorization of CuP was initially faster than that of RBBR, due to higher MnP activities in OLM. The extent of decolorization after 14 h was 60% for both dyes.
Assuntos
Coriolaceae/enzimologia , Lacase/metabolismo , Peroxidases/metabolismo , Biodegradação Ambiental , Ensaios Enzimáticos , Lignina/metabolismoRESUMO
In general, agroindustrial byproducts can be easily assimilated by several microorganisms due to their composition, which is rich in carbohydrates. Therefore, they could be appropriate for use as raw materials in a sustainable refinery concept, including the production of hydrolytic enzymes with industrial applicability. In this work, xylanase production by the filamentous fungi Talaromyces amestolkiae in submerged culture was evaluated using five agroindustrial byproducts, namely, wheat bran, citrus pulp, rice bran, peanut skin, and peanut shell. Firstly, the aforementioned byproducts were characterized in terms of cellulose, xylan, lignin, and extractives. Next, production studies were performed, and wheat bran generated the highest enzymatic activity (5.4 U·mL-1), probably because of its large amount of xylan. Subsequently, a factorial design was performed to evaluate the independent variables yeast extract, wheat bran, K2HPO4, and pH, aiming to improve the variable response, xylanase activity. The condition that promoted the highest production, 13.02 U·mL-1 (141% higher than the initial condition), was 20 g·L-1 wheat bran, 2.5 g·L-1 yeast extract, 3 g·L-1 K2HPO4, and pH 7. Thus, industrial byproducts with a high content of xylan can be used as a culture medium to produce xylanase enzymes with a Talaromyces strain through an economical and sustainable approach.
RESUMO
The most important plant species employed in reforestation programs depend on ectomycorrhizal fungi for their establishment and growth. The exploitation of this symbiosis to improve forest productivity requires fungal inoculants in a large scale level. To develop such a technology it is necessary to define the optimal composition of the culture medium for each fungus. With these objectives in mind, the effect of the composition of the culture medium on biomass production of the ectomycorrhizal fungus Pisolithus microcarpus (isolate UFSC-Pt116) was studied. The original composition of two culture media, already employed for cultivation of ectomycorrhizal fungi, was submitted to several variations with the C/N ratio as the main variable. A variation of the Pridham-Gottlieb medium was the most efficient for the production of biomass. Therefore, it was submitted to a factorial assay where glucose, peptone and yeast extract components were the factors analyzed. Results showed that the glucose concentration may be increased up to 40 % in order to promote higher biomass production. Peptone had a positive effect on this variable, whereas yeast extract promoted a deleterious effect. These results indicate that it is advisable to eliminate yeast extract from the medium and replace it with peptone prior to use.
RESUMO
In recent years, fungi have been recognized as producers of acetylcholinesterase (AChE) inhibitors, agents important for the prevention of Alzheimer's disease (AD). This study aimed to examine the AChE inhibitory, the antioxidative and antibacterial activity of two different Schizophyllum commune strains that originated from Serbia (SRB) and Italy (IT). Submerged cultivation of grown mycelia (M) and fermentation broth (F) of ethanol (EtOH) and polysaccharide (PSH) extracts lasted for 7, 14, 21 and 28 days. For AChE activity Ellman method was performed, while for antioxidative activity, sevendifferent assays were conducted: DPPH, ABTS, FRAP, SOA, OH, NO together with total phenolic content. Antimicrobial screen, LC-MS/MS technique and FTIR measurements were performed. Different isolates exhibited different AChE activity, with PSH being the strongest (SRB, M, 28 days IC90 79.73 ± 26.34 µg/mL), while in EtOH extracts, IT stood out (F, 14 days, IC50 0.8 ± 0.6 µg/mL). PSH extracts (7 days) exhibit significant antioxidative activity (AO), opposite to EtOH extracts where 14 and 21days periods stood out. Only tw extracts showed antibacterial activity. Following LC-MS/MS analysis p-hydroxybenzoic and gallic acids were the most abundant phenolics. PSH extracts demonstrated remarkable results, making this study debut and introducing S. commune as a valuable resource of AChE inhibitors.
RESUMO
Production of polysaccharides by white-rot-fungi in submerged cultivation has several advantages due to process control. This work deals with the submerged cultivation, extraction and antitumor activity of polysaccharides from a wild strain of Schizophyllum radiatum isolated from a tropical forest of Colombia. The mushroom was cultivated in laboratory conditions, and classified by classical and molecular taxonomy. Submerged cultivation was performed in a bioreactor of 5 L using a ligninolytic residue as substrate. The fermentation conditions were 30 ± 1 °C, pH 4.5, 300 rpm and 1.5 vvm of air for 4 days. The yields were 16.8 g/L (w/v) of biomass, and after extraction, 0.6 g/L of water-soluble exopolysaccharide (SEPS) and 2.01 % (w/w) of water-soluble intrapolysaccharide (SIPS) were obtained. In each extract total carbohydrate, glucans and protein contents were determined. Also, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), high performance liquid chromatography with refraction index detection (HPLC-RI), high performance gel permeation chromatography (HPGPC) and Nuclear Magnetic Resonance (NMR) analysis were performed. Results indicated that SEPS and SIPS are heteropolysaccharides with amorphous structure and high molecular weights. Antitumor and immunostimulant activity was evaluated in different cancer cell lines. The results suggest these polysaccharides have direct and indirect antitumor activity activating immune cells such as macrophages. These findings enhance our knowledge about new sources of fungal metabolites that serve as adjuvant, cheaper and less harmful alternatives to cancer treatment.
Assuntos
Adjuvantes Imunológicos/farmacologia , Antineoplásicos/farmacologia , Polissacarídeos Fúngicos/farmacologia , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Schizophyllum/metabolismo , Adjuvantes Imunológicos/isolamento & purificação , Animais , Antineoplásicos/isolamento & purificação , Reatores Biológicos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Fermentação , Polissacarídeos Fúngicos/isolamento & purificação , Humanos , Microbiologia Industrial , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Neoplasias/patologia , Filogenia , Células RAW 264.7 , Schizophyllum/genética , Schizophyllum/crescimento & desenvolvimento , Solubilidade , Células U937RESUMO
The Nocardiopsis alba strain OM-5 showed maximum protease production in submerged culture. The OM-5 protease was purified by hydrophobic interaction chromatography. The purified protease of 68 kDa showed maximum activity (3312 ± 1.64 U/mL) at 70 °C and was quite stable at 80 °C up to 4 M NaCl (w/v) at pH 9. The purified protease showed significant activity and stability in different cations, denaturing agents, metal ions, and osmolytes. The thermodynamic parameters including deactivation rate constant (Kd) and half lives (t1/2) at 50-80 °C were in the range of 2.50 × 10-3 to 5.50 × 10-3 and 277.25-111.25 min respectively at 0-4 M NaCl. The structural stability of the OM-5 protease under various harsh conditions was elucidated by circular dichroism (CD) spectroscopy followed by K2D3 analysis revealed that the native structure of OM-5 protease was stable even in sodium dodecyl sulfate and Tween 20 indicated by increased α-helices content assisted with decreased ß-sheets content.
Assuntos
Serina Endopeptidases/química , Serina Endopeptidases/isolamento & purificação , Actinobacteria/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Detergentes , Endopeptidases/química , Endopeptidases/isolamento & purificação , Estabilidade Enzimática/fisiologia , Concentração de Íons de Hidrogênio , Cinética , Nocardiopsis/enzimologia , Nocardiopsis/metabolismo , Serina/química , Serina Proteases/isolamento & purificação , Tensoativos , Temperatura , TermodinâmicaRESUMO
Submerged cultures of the basidiomycota Cystostereum murrayi emit an intensive coconut-like, sweetish, and buttery smell. For identification of the key aroma compounds, an aroma dilution analysis using dynamic headspace was performed by adjusting the split ratio of the GC inlet system. Flavor dilution (FD) factors varied from 22 up to ≥218, whereby the largest class of compounds represented terpenoids, including two rare stereoisomers of 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran (dill ether, ee ≥ 99.9). By means of nuclear magnetic resonance spectroscopy, the substances with the highest FD factors (29, 212, and 218) were identified as diastereomers of 3,6-dimethyl-3a,4,5,6,7,7a-hexayhydro-3H-1-benzofuran-2-one (dihydromenthofurolactone) and as its corresponding C3-unsaturated lactone. The latter two compounds have not been described for Cystostereum murrayi or for any other basidiomycota previously. Supplementation studies using 2-13C-d-glucose indicated that these lactones as well as the two stereoisomers of dill ether and other terpenoids were formed de novo by the fungus.
Assuntos
Odorantes , Compostos Orgânicos Voláteis , Agaricales , Aromatizantes , Técnicas de Diluição do Indicador , Odorantes/análise , OlfatoRESUMO
The edible filamentous fungi are hot candidate for future supply of functional food and feed with e.g. protein, essential amino acids, and compounds with immunostimulant activity. L-carnitine that plays a crucial role in energy metabolism represents a functional compound normally produced by Zygomycetes filamentous fungus Rhizopus oligosporus in solid-state fermentation. The present study provides the first insights on production of L-carnitine-enriched edible fungal biomass through submerged cultivation of several Ascomycetes and Zygomycetes including Aspergillus oryzae, Neurospora intermedia, Rhizopus oryzae, and Rhizopus oligosporus. A. oryzae with 3 mg L-carnitine yield per gram of fungal biomass, indicates great potential on production of this bioactive compound which is remarkably higher than the other tested fungi in this work and also previous studies. In addition to fungal strain, other factors such as cultivation time and presence of yeast extract were found to play a role. Further studies on submerged growth optimization of A. oryzae in both high-quality recipes and in medium based on low-value substrates are proposed in order to clarify its potential for production of L-carnitine-enriched fungal biomass.
Assuntos
Carnitina , Técnicas de Cultura de Células/métodos , Tecnologia de Alimentos/métodos , Fungos , Microbiologia Industrial/métodos , Biomassa , Carnitina/análise , Carnitina/metabolismo , Fermentação , Alimento Funcional/microbiologia , Fungos/química , Fungos/metabolismoRESUMO
Various fungal species can degrade lignocellulolytic materials with their enzyme cocktails composed of cellulolytic and lignolytic enzymes. In this work, seven fungal species (Mucor indicus DSM 2185, Paecilomyces variotii CBS 372.70, Myceliophthora thermophila CBS 663.74, Thielavia terrestris CBS 456.75, Botryosphaeria dothidea JCM 2738, Fusarium oxysporum f.sp. langenariae JCM 9293, and Fusarium verticillioides JCM 23107) and four nutrient media were used in the screening for effective lignocellulose degrading enzymes. From the seven tested fungi, F. oxysporum and F. verticilliodes, along with nutrient medium 4, were selected as the best medium and producers of lignocellulolytic enzymes based on the determined xylanase (>4 U mg-1) and glucanase activity (≈2 U mg-1). Nutrient medium 4 supplemented with pretreated corn cobs was used in the production of lignocellulolytic enzymes by sequential solid-state and submerged cultivation of F. oxysporum, F. verticilliodes, and a mixed culture of both strains. F. oxysporum showed 6 times higher exoglucanase activity (3.33 U mg-1) after 5 days of cultivation in comparison with F. verticillioides (0.55 U mg-1). F. oxysporum also showed 2 times more endoglucanase activity (0.33 U mg-1). The mixed culture cultivation showed similar endo- and exoglucanase activities compared to F. oxysporum (0.35 U mg-1; 7.84 U mg-1). Maximum xylanase activity was achieved after 7 days of cultivation of F. verticilliodes (≈16 U mg-1), while F. oxysporum showed maximum activity after 9 days that was around 2 times lower compared to that of F. verticilliodes. The mixed culture achieved maximum xylanase activity after only 4 days, but the specific activity was similar to activities observed for F. oxysporum. It can be concluded that both fungal strains can be used as producers of enzyme cocktails for the degradation of lignocellulose containing raw materials, and that corn cobs can be used as an inducer for enzyme production.
RESUMO
BACKGROUND: The addition of fatty acids and other molecules to culture media may intensify the production of biomolecules, such as monascus pigments, however, few studies of this have been developed. Thus, the objective of the present study was to investigate the effects of adding sodium octanoate to the culture medium, with a view to increasing the synthesis and production of the pigments produced by Monascus ruber CCT 3802 on solid and submerged cultivations. METHODS: Monacus ruber CCT 3802 was cultivated on solid and submerged media supplemented with different concentrations of sodium octanoate. The radial growth rate of the colonies was obtained from the declivity of the linear regression of the radius of the colonies as a function of cultivation time and the kinetics of submerged cultivations were performed. The filtrate obtained was submitted to scanning spectrophotometry at a range from 350 to 550 nm and the color parameters were determined by using the CIELAB color system. The data were submitted to a univariate analysis of variance (ANOVA) and the means obtained for each treatment submitted to Tukey's test using Statistica version 5.0 software at a 5% level of significance. RESULTS: Sodium octanoate exerted a strong influence on growth and pigment production in solid and submerged cultivations. The values for L*, a* and b* were positive for pigments produced, with regards to colors close to red and yellow. In the media supplemented with 1.0 mM and 1.5 mM of sodium octanoate, the production of red pigments became expressive from 48 hours-cultivation, increasing considerably from the second to the fourth days. This shows that supplementation with sodium octanoate provides a greater production of pigments in a shorter time interval than the control culture, which required 144 hours of cultivation to present a higher value for AU510nm, which directly influenced pigment productivity. CONCLUSIONS: The addition of sodium octanoate exerted a significant influence on both microbial growth and pigment production in both solid and submerged cultivations. The supplementation of the submerged cultures with sodium octanoate was responsible for an expressive production of pigments in just 48 hours, whereas 144 hours were necessary in the absence of sodium octanoate. These results are promising for increasing the productivity of pigment production, including possibilities for application on an industrial scale.
Assuntos
Caprilatos , Cor , Meios de Cultura/química , Monascus/efeitos dos fármacos , Pigmentação , Pigmentos Biológicos/biossíntese , Cinética , Monascus/crescimento & desenvolvimento , Monascus/metabolismoRESUMO
This work deals with the submerged cultivation, extraction and antitumor activity of polysaccharides from Lentinus crinitus. The fungus was isolated from a tropical forest (Antioquia, Colombia), cultivated in laboratory conditions, and classified by classical and molecular taxonomy. Then, it was cultivated in a bioreactor of 5â¯L using a ligninolytic residue as substrate. The fermentation conditions were 30⯱â¯1⯰C, pHâ¯4.5, 300â¯rpm and 1.5 vvm for 4â¯days. The yields of fermentation were 20â¯g/L of biomass. After extraction, 0.65â¯g/L of water-soluble exopolysaccharide (LEPS) and 3.3â¯mg/100â¯g of water-soluble intrapolysaccharide (LIPS) were obtained. In each extract total carbohydrate, glucans and protein contents were determined. Also, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffractometry (XRD), high performance liquid chromatography with refraction index detection (HPLC-RI) and high performance gel permeation chromatography (HPGPC) analysis for characterization were performed. The antitumor activity was evaluated and polysaccharides not only showed anti-proliferative activity in breast cancer cells but also they activate J774 macrophages as evidenced by the increase of nitric oxide and tumor necrosis factor-α (inducers of tumor cell apoptosis). Our findings suggest that polysaccharides can activate macrophages to release nitric oxide (NO) and tumor necrosis factor alpha (TNF-α), which directly blocks cancer cell growth. These findings enhance our knowledge about new sources of fungal metabolites that serve as coadjuvant, cheap and less harmful alternatives to cancer treatment.