Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Comput Chem ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302059

RESUMO

A proper understanding of excited state properties of indole derivatives can lead to rational design of efficient fluorescent probes. The optically active L a $$ {L}_a $$ and L b $$ {L}_b $$ excited states of a series of substituted indoles, where a substituent was placed on position four, were calculated using equation of motion coupled cluster and time dependent density functional theory. The results indicate that most substituted indoles have a brighter second excited state corresponding to experimental absorption maxima, but a few with electron withdrawing substituents absorb more on the first excited state. Absorption on the first excited state may increase their fluorescence quantum yield, making them better probes. Electronic structure methods were found to predict the energies of the systems with electron withdrawing substituents more accurately than those with electron donating substituents. The excited states of both states correlated well with electrophilicity, similar to the experimental trends for the absorption maxima. Overall, these computational studies indicate that theory can be used to predict excited state properties of substituted indoles, when the substituent is an electron withdrawing group.

2.
Chemistry ; 30(43): e202401776, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735846

RESUMO

B(C6F5)3 and the corresponding anion [B(C6F5)4]- are ubiquitous in main group and transition metal chemistry. Known derivatives are generally limited to the incorporation of electron donating substituents. Herein we describe electrophilic fluorination and dearomatization of such species using XeF2 in the presence of BF3 or Lewis acidic cations. In this fashion the anions [HB(C6F5)3]-, [B(C6F5)4]- and [(C6F5)3BC≡NB(C6F5)3]-, are converted to [FB(C6F7)3]-, [B(C6F7)4]-, and [(C6F7)3BC≡NB(C6F7)3]-, respectively. Similarly, the borane adducts (L)B(C6F7)3 (L=MeCN, OPEt3) are produced. These rare examples of electrophilic attack of electron deficient rings proceed as [XeF][BF4] acts as a frustrated Lewis pair effecting fluorination and dearomatization of C6F5 rings.

3.
J Comput Chem ; 44(31): 2424-2436, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37638684

RESUMO

The alternant polycyclic aromatic hydrocarbon pyrene has photophysical properties that can be tuned with different donor and acceptor substituents. Recently, a D (donor)-Pyrene (bridge)-A (acceptor) system, DPA, with the electron donor N,N-dimethylaniline (DMA), and the electron acceptor trifluoromethylphenyl (TFM), was investigated by means of time-resolved spectroscopic measurements (J. Phys. Chem. Lett. 2021, 12, 2226-2231). DPA shows great promise for potential applications in organic electronic devices. In this work, we used the ab initio second-order algebraic diagrammatic construction method ADC(2) to investigate the excited-state properties of a series of analogous DPA systems, including the originally synthesized DPAs. The additionally investigated substituents were amino, fluorine, and methoxy as donors and nitrile and nitro groups as acceptors. The focus of this work was on characterizing the lowest excited singlet states regarding charge transfer (CT) and local excitation (LE) characters. For the DMA-pyrene-TFM system, the ADC(2) calculations show two initial electronic states relevant for interpreting the photodynamics. The bright S1 state is locally excited within the pyrene moiety, and an S2 state is localized ~0.5 eV above S1 and characterized as a donor to pyrene CT state. HOMO and LUMO energies were employed to assess the efficiency of the DPA compounds for organic photovoltaics (OPVs). HOMO-LUMO and optical gaps were used to estimate power conversion and light-harvesting efficiencies for practical applications in organic solar cells. Considering the systems using smaller D/A substituents, compounds with the strong acceptor NO2 substituent group show enhanced CT and promising properties for use in OPVs. Some of the other compounds with small substituents are also found to be competitive in this regard.

4.
Chemphyschem ; 24(6): e202200748, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36448371

RESUMO

The novel triel bonds of BX3 (X=H, F, Cl, Br, and I) and C5 H5 B as electron acceptors and AuR2 (R=Cl and CH3 ) as an electron donor were explored. The triel bond is a primary driving force for most complexes, while the contribution from a halogen-chlorine interaction in BX3 -AuCl2 (X=Cl, Br, and I) and an iodine-Au interaction in BI3 -Au(CH3 )3 is also very important. Interestingly, the positively charged Au atom of AuCl2 can attractively bind with the holes of BX3 and C5 H5 B. The interaction energy lies in the range of 1 and 80 kcal/mol, in the order X=F

5.
Bioorg Chem ; 131: 106282, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459777

RESUMO

The low aqueous solubility of colchicine site antimitotic agents, of which the trimethoxyphenyl (A ring) is a heavy contributor, is a serious drawback in their clinical development. We have designed new A ring analogs with chameleonic masked polar amino groups able to increase aqueous solubility and also behave as non-polar through intramolecular hydrogen bonds when bound to tubulin. We have incorporated these new A rings in several scaffolds (sulfonamides, combretastatins, phenstatins, isocombretastatins), synthesized, and assayed 43 representatives. The amino analogs show improved aqueous solubility and some of them (8, 60Z, and 67) nanomolar anti-proliferative potencies against human cancer cell lines, with the most favorable substituent being a 3-methylamino group. The antiproliferative effect relates to tubulin inhibition as shown by in vitro tubulin polymerization inhibition, immunofluorescence microscopy, and cell cycle and apoptosis analysis by flow cytometry. The compounds arrest the cell cycle of treated cells in G2/M and later develop an apoptotic response. Docking studies suggested binding at the colchicine site of tubulin with good agreement with the DFT models of the new structural variations made. The 3-methylamino-4,5­dimethoxyphenyl moiety is an example of the masked polar group incorporation (MPGI) strategy for soluble ligands binding to hydrophobic sites and a good trimethoxyphenyl ring replacement for the development of new colchicine site ligands.


Assuntos
Antineoplásicos , Colchicina , Humanos , Colchicina/química , Linhagem Celular Tumoral , Sítios de Ligação , Tubulina (Proteína)/metabolismo , Solubilidade , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células
6.
Luminescence ; 38(8): 1501-1510, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37292009

RESUMO

To better understand the relationship between molecular structure and mechanofluorochromic characteristics, three carbazole-based N^O-chelated difluoroboron compounds (Cz-S-BF2 , Cz-PhNp-S-BF2 , and Cz-BNp-S-BF2 ) with different aryl substituents moieties were designed and synthesized. The mechanofluorochromic behaviours of Cz-S-BF2 (luminescence from bluish-green to yellowish-green, emission from 504 to 535 nm) without aryl substitution and Cz-PhNp-S-BF2 (luminescence from green and yellow, emission from 521 to 557 nm) with a phenyl-naphthalene group underwent reversible conversion using the grinding-fuming process. For Cz-BNp-S-BF2 this was not apparent due to the well coplanarity of the binaphthalene moiety. Mechanofluorochromic properties were demonstrated through XRD patterns measurement. We envisage that this study will provide a practicable reference to acquire organic molecules with mechanofluorochromic characteristics.


Assuntos
Carbazóis , Gases , Luminescência
7.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768358

RESUMO

In this work, octafluoro-substituted phthalocyanines of zinc, vanadyl, and cobalt (MPcF8, M = Zn(II), Co(II), VO) were synthesized and studied. The structures of single crystals of the obtained phthalocyanines were determined. To visualize and compare intermolecular contacts in MPcF8, an analysis of Hirshfeld surfaces (HS) was performed. MPcF8 nanoscale thickness films were deposited by organic molecular beam deposition technique and their structure and orientation were studied using X-ray diffraction. Comparison of X-ray diffraction patterns of thin films with the calculated diffractograms showed that all three films consisted of a single crystal phase, which corresponded to a phase of single crystals. Only one strong diffraction peak corresponding to the plane (001) was observed on the diffraction pattern of each film, which indicated a strong preferred orientation with the vast majority of crystallites oriented with a (001) crystallographic plane parallel to the substrate surface. The effect of the central metals on the electronic absorption and vibrational spectra of the studied phthalocyanines as well as on the electrical conductivity of their films is also discussed.


Assuntos
Vanadatos , Zinco , Zinco/química , Cobalto , Difração de Raios X , Condutividade Elétrica
8.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677782

RESUMO

Subphthalocyanines (SubPcs) are a kind of tripyrrolic macrocycle with a boron atom at their core. Incorporating different units onto the SubPc periphery can endow them with various unique properties. Herein, a series of novel fluorinated low-symmetry SubPc derivatives containing chlorine groups (F8-Cl4-SubPc, F4-Cl8-SubPc) and methoxy groups (F8-(OCH3)2-SubPc) were synthesized and characterized by spectral methods (MS, FT-IR, 1H, 13C, 11B, and 19F NMR spectroscopy), and the effect of the peripheral substituents on their electronic structure of low-symmetry macrocycle was investigated by cyclic voltammetry, theoretical calculation, electronic absorption, and emission spectroscopy. In contrast to perfluorinated SubPcs, these low-symmetry SubPcs revealed non-degenerate LUMO and LUMO + 1 orbitals, especially F8-(OCH3)2-SubPc, which was consistent with the split Q-band absorptions. The cyclic voltammetry revealed that these SubPcs exhibited two or three reduction waves and one oxidation wave, which is consistent with the reported SubPcs. Finally, an intracellular fluorescence imaging study of these compounds revealed that these compounds could enter cancer cells and be entrapped in the lysosomes, which provides a possibility of future applications in lysosome fluorescence imaging and targeting.

9.
Molecules ; 28(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298858

RESUMO

Substituent-regulated cyclization of conjugated alkynes with acid catalysis was developed in this paper, and it provides a straightforward synthesis of cyclic-(E)-[3]dendralenes. Depending on the electronic effect of the aromatic ring pairing, a variety of phosphinyl quintuplet/hexa cyclo-[3]dendralenes with diverse substitution patterns are accessible, with good efficiency and high stereoselectivity. This self-cyclization process achieves the first precise construction of a phosphinylcyclo-(E)-[3]dendralene from conjugated alkynes to aromatization.


Assuntos
Alcenos , Alcinos , Ciclização , Catálise , Estrutura Molecular
10.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446679

RESUMO

2,4-Dihydroxybenzophenone is the most widely used molecule in the benzophenone group of UV absorbers. It is known that the UV absorption ability is dependent on the substituents. Numerous studies have shown that the strength of intramolecular hydrogen bonds is the main factor affecting this type of UV absorber. However, the effect of substituents on the formation and nature of the hydrogen bonds has not been well studied. In this work, the effect of the type of substituent and the substitution position on the absorption intensity of 2,4-dihydroxybenzophenone molecules is verified both experimentally and theoretically. The effect of substituents on the intramolecular hydrogen bonding of 2,4-dihydroxybenzophenone was investigated by DFT calculations. The results indicate that the addition of different substituents leads to various changes in the strength of the hydrogen bonding in 2,4-dihydroxybenzophenone. On the X-substitution site or the Y-substitution site, halogen groups and electron-absorbing groups such as -CN and -NO2 increase the strength of the hydrogen bond, while electron-giving groups such as -N(CH3)2 and -OCH3 decrease the strength of the bond. For the same substituent, the one at the Y site has a higher effect on hydrogen bonding than that at the X site. By NBO analysis, it was found that the substituents would cause charge redistribution of the individual atoms of 2,4-dihydroxybenzophenones, thus affecting the formation and strength of the hydrogen bonds. Moreover, when the substituent is at the Y substitution site, the oxygen atom of the carbonyl group is less able to absorb electrons and more charge is attracted to the oxygen atom of the hydroxyl group, resulting in a larger charge difference between the two oxygen atoms and an increase of bond energy. Finally, a multiple linear regression analysis of the NPA charge number of the atoms involved in the formation of the hydrogen-bonded chelated six-membered ring was performed with the energy of the hydrogen bond and the percentage of influencing factors estimated, which were found to jointly affect the strength of hydrogen bonding. The aim of this study is to provide theoretical guidance for the design of benzophenone-based UV absorbers that absorb UV light of specific wavelength bands.


Assuntos
Benzofenonas , Raios Ultravioleta , Ligação de Hidrogênio , Oxigênio
11.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513214

RESUMO

A systematic study on the distortion of a naphthalene ring was performed using steric repulsion between peri-substituents at the 1- and 8-positions. The introduction of bromo groups into the methyl groups of the 1,8-dimethylnaphthalene enhanced the steric repulsion to distort the naphthalene ring. X-ray crystallography revealed that 1,8-bis(bromomethyl)naphthalene had a vertical distortion with a 11.0° dihedral angle (α) between peri-substituents which disturbed the coplanarity of the naphthalene ring. On the other hand, the dihedral angle of 1,8-bis(dibromomethyl)naphthalene was smaller (α = 8.3°) despite the bulkier substituents. In this case, horizontal distortion of the naphthalene ring increased. These distortions should non-electronically activate the naphthalene framework. In order to evaluate their reactivity, nitration and hydrogenation were carried out; however, the 1,8-bis(dibromomethyl)naphthalene was intact under the employed conditions. A DFT calculation suggested that the inertness of the 1,8-bis(dibromomethyl)naphthalene is presumably due to the negative hyperconjugation of the (dibromo)methyl group.

12.
Beilstein J Org Chem ; 19: 1713-1727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025090

RESUMO

N-Acylhydrazones are a versatile class of organic compounds with a diversity of potential applications. In this study, two new structure-related 3,4,5-trimethoxybenzoyl-containing N-acylhydrazones were synthesized and fully characterized, both in solution and in the solid state. The compounds differ with respect to the carbonyl precursors, i.e., 3-substituted salicylaldehydes with either a methyl or a nitro group. Single crystals of both compounds were isolated from the respective mother liquors and, in both cases, XRD confirmed the obtention of the (E)-isomer, in an anti-conformation. Computational calculations (gas and water phases) were performed in order to confirm some of the structural and vibrational aspects of the compounds. An important intramolecular H bond involving the phenolic hydroxy group and the azomethine nitrogen was identified in the solid state and seems to be maintained in solution. Moreover, the presence of the electron-withdrawing nitro substituent makes this interaction stronger. However, the contact should probably not subsist for the nitro compound under physiological conditions since the presence of this substituent significantly affects the pKa of the phenol: an apparent value of 5.68 ± 0.02 was obtained. This also impacts the basicity of the azomethine nitrogen and, as a consequence, increases the hydrazone's susceptibility to hydrolysis. Nevertheless, both compounds are stable at physiological-like conditions, especially the methyl-derived one, which qualifies them for further toxicological and activity studies, such as those involving trivalent metal ions sequestering in the context of neurodegenerative diseases.

13.
Bioorg Med Chem ; 54: 116562, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923390

RESUMO

Comparison of substituents present in natural products with the substituents found in average synthetic molecules reveals considerable differences between these two groups. The natural products substituents contain mostly oxygen heteroatoms, are structurally more complex, often containing double bonds and are rich in stereocenters. Substituents found in synthetic molecules contain nitrogen and sulfur heteroatoms, halogenes and more aromatic and particularly heteroaromatic rings. The characteristics of substituents typical for natural products identified here can be useful in the medicinal chemistry context, for example to guide the synthesis of natural product-like libraries and natural product-inspired fragment collections. The results may be used also to support compound derivatization strategies and the design of pseudo-natural natural products.


Assuntos
Produtos Biológicos/síntese química , Desenho de Fármacos , Produtos Biológicos/química , Química Farmacêutica , Estrutura Molecular
14.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144600

RESUMO

The reactions of newly designed lithiated triamidoamines Li3LR (R = iPr, Pen, and Cy2) with VCl3(THF)3 under N2 yielded dinitrogen-divanadium complexes with a µ-N2 between vanadium atoms [{V(LR)}2(µ-N2)] (R = iPr (1) and Pen (2)) for the former two, while not dinitrogen-divanadium complexes but a mononuclear vanadium complex with a vacant site, [V(LCy2)] (R = Cy2 (3)), were obtained for the third ligand. The V-NN2 and N-N distances were 1.7655(18) and 1.219(4) Å for 1 and 1.7935(14) and 1.226(3) Å for 2, respectively. The ν(14N-14N) stretching vibrations of 1 and 2, as measured using resonance Raman spectroscopy, were detected at 1436 and 1412 cm-1, respectively. Complex 3 reacted with potassium metal in the presence of 18-crown-6-ether under N2 to give a hetero-dinuclear vanadium complex with µ-N2 between vanadium and potassium, [VK(LCy2)(µ-N2)(18-crown-6)] (4). The N-N distance and ν(14N-14N) stretching for 4 were 1.152(3) Å and 1818 cm-1, respectively, suggesting that 4 is more activated than complexes 1 and 2. The complexes 1, 2, 3, and 4 reacted with HOTf and K[C10H8] to give NH3 and N2H4. The yields of NH3 and N2H4 (per V atom) were 47 and 11% for 1, 38 and 16% for 2, 77 and 7% for 3, and 80 and 5% for 4, respectively, and 3 and 4, which have a ligand LCy2, showed higher reactivity than 1 and 2.


Assuntos
Éteres de Coroa , Vanádio , Ligantes , Potássio , Vanádio/química
15.
Angew Chem Int Ed Engl ; 61(27): e202202532, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357065

RESUMO

Chirality is a particularly important concept in nature and exists at all length scales, ranging from the molecular level to the supramolecular level. Over the last two decades, various design strategies have been developed to construct chiral materials based on perylene diimides (PDIs) and to mimic the chiral assembly process in biological systems, but applications of these chiral aggregates are still at an early stage. This Minireview summarizes recent progress in the synthesis and properties of chiral PDIs. The chirality in PDI-based materials can be generated by three different approaches: from the twisted planes of PDIs, the chiral substituents of PDIs, and the co-assembly of achiral PDIs and chiral guests. A comprehensive understanding of the applications of chiral PDIs as well as potential future developments is also provided.


Assuntos
Perileno , Imidas
16.
Angew Chem Int Ed Engl ; 61(2): e202113206, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34636127

RESUMO

Multiple resonance (MR) emitters are promising for highly efficient organic light-emitting diodes (OLEDs) with narrowband emission; however, they still face intractable challenges with concentration-caused emission quenching, exciton annihilation, and spectral broadening. In this study, sterically wrapped MR dopants with a fluorescent MR core sandwiched by bulk substituents were developed to address the intractable challenges by reducing intermolecular interactions. Consequently, high photo-luminance quantum yields of ≥90 % and small full width at half maximums (FWHMs) of ≤25 nm over a wide range of dopant concentrations (1-20 wt %) were recorded. In addition, we demonstrated that the sandwiched MR emitter can effectively suppress Dexter interaction when doped in a thermally activated delayed fluorescence sensitizer, eliminating exciton loss through dopant triplet. Within the above dopant concentration range, the optimal emitter realizes remarkably high maximum external quantum efficiencies of 36.3-37.2 %, identical small FWHMs of 24 nm, and alleviated efficiency roll-offs in OLEDs.

17.
Angew Chem Int Ed Engl ; 61(28): e202205618, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35491966

RESUMO

We report herein a facile and highly modular access to an intriguing class of free Au-substituted phosphines (AuPhos), namely (LAu)n PR3-n (L=singlet carbene ligand; R=H, aryl, alkyl, silyl) (n=1-3). The Tolman electronic parameter (TEP) values coupled with theoretical investigations showcase that Au-substitution can boost the electron-releasing ability of AuPhos, thus leading to an electronically and sterically tunable, extremely electron-rich phosphorus center. The high basicity of AuPhos is attributed to the d-p lone pair π-repulsion arising from interaction between Au substituents and the lone pair at P. A series of multi-nuclear transition metal complexes (i.e. Rh, Ir, Pd, Au, W, Mn) ligated by AuPhos are readily prepared via a straightforward process. Preliminary catalytic results reveal the facilitation of Pd-catalyzed C-N coupling reactions and Ir-catalyzed decarbonylation reactions via AuPhos. This work provides insights for future development of electron-rich ligands.

18.
Angew Chem Int Ed Engl ; 61(17): e202115908, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35156276

RESUMO

Stable and soluble redox-active nitroxyl radicals are highly desired for high-capacity and long-life aqueous zinc hybrid flow batteries (AZHFBs). Here we report a "π-π" conjugated imidazolium and "p-π" conjugated acetylamino co-functionalized 2,2,6,6-tetramethylpiperidine-N-oxyl (MIAcNH-TEMPO) as stable catholyte for AZHFBs. The incorporation of double-conjugate substituents could delocalize the electron density of the N-O head and thus remarkably stabilize the radical and oxoammonium forms of TEMPO, avoiding the side reaction of ring-opening. Consequently, the applied MIAcNH-TEMPO/Zn AZHFB demonstrates the hardly time-dependent stability with a constant capacity retention of 99.95 % per day over 16.7 days at a high concentration catholyte of 1.5 M and high current density of 50 mA cm-2 . This proposed molecular engineering strategy based on electron density regulation of redox-active structures displays an attractive efficacy and thus represents a remarkable advance in high-performance AZHFBs.

19.
Bioorg Med Chem Lett ; 35: 127779, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434643

RESUMO

To expand the variety of 2'-O-modified oligonucleotides, we synthesized 2'-O-carbamoylethyl-modified oligonucleotides bearing ethyl, n-propyl, n-butyl, n-pentyl, and n-octyl groups on their nitrogen atoms. The corresponding nucleosides were synthesized using 2'-O-benzyloxycarbonylethylthymidine, which was easily converted into the carboxylic acid through hydrogeneration; subsequent condensation with the appropriate amine gave the desired nucleoside. We evaluated the effect of the 2'-O-alkylcarbamoylethyl modifications on duplex stability by analyzing melting temperature, which revealed the formation of isostable duplexes. In addition, we also revealed that these modifications, especially octylcarbamoylethyl, endowed these oligonucleotides with resistance toward a 3'-exonuclease. These results highlight the usefulness of the 2'-O-alkylcarbamoylethyl modification for various biological applications.


Assuntos
Inibidores Enzimáticos/farmacologia , Exonucleases/antagonistas & inibidores , Oligonucleotídeos/farmacologia , RNA Complementar/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Exonucleases/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , RNA Complementar/metabolismo , Temperatura de Transição
20.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34798622

RESUMO

Quantum interference (QI) in single molecular junctions shows a promising perspective for realizing conceptual nanoelectronics. However, controlling and modulating the QI remains a big challenge. Herein, two-type substituents at different positions ofmeta-linked benzene, namely electron-donating methoxy (-OMe) and electron-withdrawing nitryl (-NO2), are designed and synthesized to investigate the substituent effects on QI. The calculated transmission coefficientsT(E) indicates that -OMe and -NO2could remove the antiresonance and destructive quantum interference (DQI)-induced transmission dips at position 2. -OMe could raise the antiresonance energy at position 4 while -NO2groups removes the DQI features. For substituents at position 5, both of them are nonactive for tuning QI. The conductance measurements by scanning tunneling microscopy break junction show a good agreement with the theoretical prediction. More than two order of magnitude single-molecule conductance on/off ratio could be achieved at the different positions of -NO2substituent groups at room temperature. The present work proves chemical substituents can be used for tuning QI features in single molecular junctions, which provides a feasible way toward realization of high-performance molecular devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA