Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064091

RESUMO

Dissimilatory sulfur metabolism was recently shown to be much more widespread among bacteria and archaea than previously believed. One of the key pathways involved is the dsr pathway that is responsible for sulfite reduction in sulfate-, sulfur-, thiosulfate-, and sulfite-reducing organisms, sulfur disproportionators and organosulfonate degraders, or for the production of sulfite in many photo- and chemotrophic sulfur-oxidizing prokaryotes. The key enzyme is DsrAB, the dissimilatory sulfite reductase, but a range of other Dsr proteins is involved, with different gene sets being present in organisms with a reductive or oxidative metabolism. The dsrD gene codes for a small protein of unknown function and has been widely used as a functional marker for reductive or disproportionating sulfur metabolism, although in some cases this has been disputed. Here, we present in vivo and in vitro studies showing that DsrD is a physiological partner of DsrAB and acts as an activator of its sulfite reduction activity. DsrD is expressed in respiratory but not in fermentative conditions and a ΔdsrD deletion strain could be obtained, indicating that its function is not essential. This strain grew less efficiently during sulfate and sulfite reduction. Organisms with the earliest forms of dsrAB lack the dsrD gene, revealing that its activating role arose later in evolution relative to dsrAB.


Assuntos
Sulfito de Hidrogênio Redutase/metabolismo , Enxofre/metabolismo , Regulação Alostérica , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Deleção de Genes , Regulação da Expressão Gênica , Modelos Biológicos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Enxofre/química
2.
Environ Sci Technol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360610

RESUMO

The sulfidogenic process mediated by sulfate-reducing bacteria (SRB) is not ideal for treating mercury (Hg)-bearing wastewater due to the risk of methylmercury (MeHg) production. Addressing this challenge, our study demonstrated that, under S0-rich conditions and without organic additives, sulfidogenic communities dominated by sulfur-disproportionating bacteria (SDB) can effectively remove Hg(II) and prevent MeHg production. Using various inocula, we successfully established biological sulfidogenic systems driven separately by SDB and SRB. Batch experiments revealed that SDB cultures completely removed Hg(II) from the solution as HgS. Remarkably, no MeHg production was observed in the SDB cultures, while an average concentration of 0.32 µg/L of MeHg was detected in the SRB cultures. The absence of MeHg production in the SDB cultures could be mainly attributed to the cultivation conditions that reshaped the microbial community, resulting in a rapid decline of SRB-dominated Hg-methylating microorganisms. Consequently, the average abundance of the hgcA gene was 28 times lower than the levels before cultivation. Additionally, we found that the enriched Dissulfurimicrobium sp. bin121 can produce biogenic sulfide through sulfur disproportionation but lacks the hgcA gene, rendering it incapable of methylating Hg. Overall, we propose a novel biotechnology driven by SDB that can safely and sustainably treat Hg-bearing wastewater.

3.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060020

RESUMO

The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber. However, our understanding of shrimp-bacterium interactions is limited. In this report, we focused on the deltaproteobacterial epibiont of R. exoculata from the relatively unexplored South Mid-Atlantic Ridge. A nearly complete genome of a Deltaproteobacteria epibiont was binned from the assembled metagenome. Whole-genome phylogenetic analysis reveals that it is affiliated with the genus Desulfobulbus, representing a potential novel species for which the name "Candidatus Desulfobulbus rimicarensis" is proposed. Genomic and transcriptomic analyses reveal that this bacterium utilizes the Wood-Ljungdahl pathway for carbon assimilation and harvests energy via sulfur disproportionation, which is significantly different from other shrimp epibionts. Additionally, this epibiont has putative nitrogen fixation activity, but it is extremely active in directly taking up ammonia and urea from the host or vent environments. Moreover, the epibiont could be distinguished from its free-living relatives by various features, such as the lack of chemotaxis and motility traits, a dramatic reduction in biosynthesis genes for capsular and extracellular polysaccharides, enrichment of genes required for carbon fixation and sulfur metabolism, and resistance to environmental toxins. Our study highlights the unique role and symbiotic adaptation of Deltaproteobacteria in deep-sea hydrothermal vent shrimps.IMPORTANCE The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe "Candidatus Desulfobulbus rimicarensis," an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host.


Assuntos
Adaptação Biológica , Decápodes/microbiologia , Deltaproteobacteria/isolamento & purificação , Genoma Bacteriano , Fontes Hidrotermais/microbiologia , Simbiose , Animais , Oceano Atlântico , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Características de História de Vida , Filogenia
4.
Appl Microbiol Biotechnol ; 104(19): 8489-8504, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32808049

RESUMO

Coupling elemental mercury (Hg0) oxidation, autotrophic denitrifying sulfur oxidation, and sulfur disproportionation offers technological potential for simultaneous Hg0 and nitric oxide (NO) removal. This study shed light on simultaneous demercuration and denitration of flue gas by a sulfur-oxidizing membrane biofilm reactor (MBfR). Removal efficiency of Hg0 and NO attained 92% and 83%, respectively in long-term operation. Taxonomic and metagenomic study revealed that a tremendous variety of Hg0-oxidizing bacteria (MOB) (Thiobacillus, Truepera, etc.), denitrifying/sulfur-oxidizing bacteria (DSOB) (Thioalkalivibrio, Thauera, etc.), sulfur-disproportionating bacteria (SDB) (Desulfobulbus, Desulfomicrobium, etc.), and multi-functional bacteria (Halothiobacillus, Thiobacillus, etc.) significantly increased in abundance during growth under feeding of Hg0 and NO in simulated flue gas. The comprehensive employment of sequential chemical extraction processes, inductive coupled mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy coupled to energy disperse spectroscopy confirmed that Hg0 was finally biologically oxidized to crystallized metacinnabar (ß-HgS) extracellular micromolecular particles. Our findings provided mechanistic insights that MOB, DSOB, and multi-functional bacteria synergistically bio-oxidized Hg0 as the initial electron donor to Hg2+ and denitrified NO as the terminal electron acceptor to N2. SDB disproportionated S0 branched from S2O32- into S2- and SO42-, and ß-HgS formation from Hg2+ and disproportionation-derived S2-, thermodynamically favored Hg0 bio-oxidation. This novel biotechnique can be a cost-effective and environmentally friendly alternative to flue gas Hg0 and NO treatment. KEY POINTS: • Combination of Hg0 bio-oxidation and autotrophic denitrifying sulfur oxidation achieved simultaneous Hg0 and NO removal. • Thiosulfate disproportionation reinforced Hg0 bio-oxidation for Hg0 removal. • Mercury-oxidizing bacteria, denitrifying/sulfur-oxidizing bacteria, and sulfur-disproportionating bacteria synergistically accomplished Hg0 and NO removal.


Assuntos
Desnitrificação , Mercúrio , Processos Autotróficos , Reatores Biológicos , Oxirredução , Enxofre
5.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625980

RESUMO

The thermoacidophile Acidianus is widely distributed in Yellowstone National Park hot springs that span large gradients in pH (1.60 to 4.84), temperature (42 to 90°C), and mineralogical composition. To characterize the potential role of flexibility in mineral-dependent energy metabolism in contributing to the widespread ecological distribution of this organism, we characterized the spectrum of minerals capable of supporting metabolism and the mechanisms that it uses to access these minerals. The energy metabolism of Acidianus strain DS80 was supported by elemental sulfur (S0), a variety of iron (hydr)oxides, and arsenic sulfide. Strain DS80 reduced, oxidized, and disproportionated S0 Cells growing via S0 reduction and disproportionation did not require direct access to the mineral to reduce it, whereas cells growing via S0 oxidation did require direct access, observations that are attributable to the role of H2S produced by S0 reduction/disproportionation in solubilizing and increasing the bioavailability of S0 Cells growing via iron (hydr)oxide reduction did not require access to the mineral, suggesting that the cells reduce Fe(III) that is being leached by the acidic growth medium. Cells growing via oxidation of arsenic sulfide with Fe(III) did not require access to the mineral to grow. The stoichiometry of reactants to products indicates that cells oxidize soluble As(III) released from oxidation of arsenic sulfide by aqueous Fe(III). Taken together, these observations underscore the importance of feedbacks between abiotic and biotic reactions in influencing the bioavailability of mineral substrates and defining ecological niches capable of supporting microbial metabolism.IMPORTANCE Mineral sources of electron donor and acceptor that support microbial metabolism are abundant in the natural environment. However, the spectrum of minerals capable of supporting a given microbial strain and the mechanisms that are used to access these minerals in support of microbial energy metabolism are often unknown, in particular among thermoacidophiles. Here, we show that the thermoacidophile Acidianus strain DS80 is adapted to use a variety of iron (hydro)oxide minerals, elemental sulfur, and arsenic sulfide to support growth. Cells rely on a complex interplay of abiologically and biologically catalyzed reactions that increase the solubility or bioavailability of minerals, thereby enabling their use in microbial metabolism.


Assuntos
Acidianus/metabolismo , Fontes Termais/microbiologia , Minerais/metabolismo , Acidianus/crescimento & desenvolvimento , Arsenicais/metabolismo , Metabolismo Energético , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Enxofre/metabolismo
6.
Microb Ecol ; 76(1): 37-48, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28639032

RESUMO

Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.


Assuntos
Bactérias/metabolismo , Materiais de Construção/análise , Ecologia , Sulfeto de Hidrogênio/metabolismo , Enxofre/química , Incrustação Biológica , Sulfato de Cálcio , China , Cobre , Corrosão , Concentração de Íons de Hidrogênio , Oxirredução , Sulfatos/metabolismo , Sulfetos/metabolismo , Dióxido de Enxofre/química , Tiossulfatos/química
7.
J Bacteriol ; 199(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920296

RESUMO

Sequence comparisons showed that the sulfur oxygenase reductase (SOR) of the haloalkaliphilic bacterium Thioalkalivibrio paradoxus Arh 1 (TpSOR) is branching deeply within dendrograms of these proteins (29 to 34% identity). A synthetic gene encoding TpSOR expressed in Escherichia coli resulted in a protein 14.7 ± 0.9 nm in diameter and an apparent molecular mass of 556 kDa. Sulfite and thiosulfate were formed from elemental sulfur in a temperature range of 10 to 98°C (optimum temperature ≈ 80°C) and a pH range of 6 to 11.5 (optimum pH ≈ 9; 308 ± 78 U/mg of protein). Sulfide formation had a maximum specific activity of 0.03 U/mg, or <1% of the corresponding activity of other SORs. Hence, reductase activity seems not to be an integral part of the reaction mechanism. TpSOR was most active at NaCl or glycine betaine concentrations of 0 to 1 M, although 0.2% of the maximal activity was detected even at 5 M NaCl and 4 M betaine. The melting point of TpSOR was close to 80°C, when monitored by circular dichroism spectroscopy or differential scanning fluorimetry; however, the denaturation kinetics were slow: 55% of the residual activity remained after 25 min of incubation at 80°C. Site-directed mutagenesis showed that the active-site residue Cys44 is essential for activity, whereas alanine mutants of the two other conserved cysteines retained about 0.5% residual activity. A model of the sulfur metabolism in T. paradoxus is discussed. IMPORTANCE: Sulfur oxygenase reductases (SORs) are the only enzymes catalyzing an oxygen-dependent disproportionation of elemental sulfur and/or polysulfides to sulfite, thiosulfate, and hydrogen sulfide. SORs are known from mesophilic and extremophilic archaea and bacteria. All SORs seem to form highly thermostable 24-subunit hollow spheres. They carry a low-potential mononuclear nonheme iron in the active site and an indispensable cysteine; however, their exact reaction mechanisms are unknown. Typically, the reductase activity of SORs is in the range of 5 to 50% of the oxygenase activity, but mutagenesis studies had so far failed to identify residues crucial for the reductase reaction. We describe here the first SOR, which is almost devoid of the reductase reaction and which comes from a haloalkaliphilic bacterium.


Assuntos
Gammaproteobacteria/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genoma Bacteriano , Mutagênese Sítio-Dirigida , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Filogenia
8.
Extremophiles ; 21(2): 307-317, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28028613

RESUMO

Microbial communities of Kamchatka Peninsula terrestrial hot springs were studied using molecular, radioisotopic and cultural approaches. Analysis of 16S rRNA gene fragments performed by means of high-throughput sequencing revealed that aerobic autotrophic sulfur-oxidizing bacteria of the genus Sulfurihydrogenibium (phylum Aquificae) dominated in a majority of streamers. Another widely distributed and abundant group was that of anaerobic bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). Archaea of the genus Vulcanisaeta were abundant in a high-temperature, slightly acidic hot spring, where they were accompanied by numerous Nanoarchaeota, while the domination of uncultured Thermoplasmataceae A10 was characteristic for moderately thermophilic acidic habitats. The highest rates of inorganic carbon assimilation determined by the in situ incubation of samples in the presence of 14C-labeled bicarbonate were found in oxygen-dependent streamers; in two sediment samples taken from the hottest springs this process, though much weaker, was found to be not dependent on oxygen. The isolation of anaerobic lithoautotrophic prokaryotes from Kamchatka hot springs revealed a wide distribution of the ability for sulfur disproportionation, a new lithoautotrophic process capable to fuel autonomous anaerobic ecosystems.


Assuntos
Archaea/fisiologia , Processos Autotróficos/fisiologia , Bactérias Gram-Positivas/fisiologia , Fontes Termais/microbiologia , Microbiologia da Água , Sibéria
9.
Geochem Trans ; 15: 7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959098

RESUMO

BACKGROUND: The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. RESULTS: Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 µmol L(-1)) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ(34)S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ(34)S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur-polysulfide - hydrogen sulfide system. Triple sulfur isotope ((32)S, (33)S, (34)S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆(33)S among species and between pools are observed. CONCLUSIONS: The variation of sulfate isotopic composition, the origin of differences in isotopic composition of sulfide and zero-valent sulfur, as well as differences in ∆(33)S of sulfide and sulfate are likely due to a complex network of abiotic redox reactions, including disproportionation pathways.

10.
Angew Chem Int Ed Engl ; 53(50): 13808-12, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25296684

RESUMO

The disproportionation of elemental sulfur at moderate temperatures is investigated in the redox condensation involving o-halonitrobenzenes 1 and benzylamines 2. As a redox moderator, elemental sulfur plays the dual role of both electron donor and acceptor, generating its lowest and highest oxidation states: S(-2) (sulfide equivalent) in benzothiazole 3 and S(+6) (sulfate equivalent) in sulfamate 4, and filling the electron gap of the global redox condensation process. Along with this process, a cascade of reactions of reduction of the nitro group of 1, oxidation of the aminomethyl group of 2, metal-free aromatic halogen substitution, and condensation finally led to 2-arylbenzothiazoles 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA