Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 36763-36773, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973076

RESUMO

Sulfur dots are a new class of recently developed nonmetallic luminescent nanomaterials with various potential applications. Herein, we synthesized sulfur dots using a mild chemical etching method and then modified the structural features of the as-synthesized sulfur dots using a slow and defined solvent-assisted aggregation process. This increases the particle size and overall crystallinity along with the modifications of the surface functional groups, which eventually show a new emission band at longer wavelengths. Detailed photophysical and temperature-dependent luminescence studies confirmed that the new emissive state evolves due to interparticle interactions in the excited state. Furthermore, the occurrence of a new emissive state in a longer-wavelength region helped reduce the energy gap between the lowest excited singlet state and the lowest excited triplet state in modified sulfur dots, resulting in an aqueous stable room-temperature phosphorescence/afterglow emission through efficient intersystem crossing. This typical efficacious afterglow emission directly shows the potential applicability of structurally modified sulfur dots in encryption devices and can also be potentially effective in light emitting diodes (LED) and sensing devices.

2.
Talanta ; 265: 124925, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437396

RESUMO

The combination of highly sensitive electrochemiluminescence (ECL) techniques with localized surface plasmon resonance (LSPR) effect can achieve the highly sensitive and specific detection in the analytical and biosensing applications. However, how to effectively improve the electromagnetic field intensity is an unresolved issue. Herein, we have developed an ECL biosensor based on sulfur dots and Au@Ag nanorod array architecture. Firstly, the high luminescent sulfur dots with ionic liquid capping (S dots (IL) have been prepared as the new ECL emitter. The ionic liquid greatly improved the conductivity of sulfur dots in the sensing process. Furthermore, Au@Ag nanorods array structure was constructed on the electrode surface by the evaporation induced self-assembly. On the one hand, the LSPR of Au@Ag nanorods was more significant than that of good nanomaterial due to the plasma hybridization and the competition between free electrons and oscillating electrons. On the other hand, nanorods array structure had strong electromagnetic field intensity as hot spots due to the surface plasmon coupling ECL effect (SPC-ECL) effect. Therefore, the Au @Ag nanorods array architecture not only greatly enhanced the ECL intensity of sulfur dots, but also changed the ECL signals into polarized emission. Finally, the constructed polarized ECL sensing system was used to detect the mutated BRAF DNA in the eluent of thyroid tumor tissue. The biosensor showed the linear range from 100 fM to 10 nM with a detection limit of 20 fM. The satisfactory results demonstrated that the developed sensing strategy had great potential in the clinical diagnosis of BRAF DNA mutation in thyroid cancer.

3.
Anal Chim Acta ; 1279: 341788, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827636

RESUMO

Alpha-glucosidase (α-Glu) plays a crucial role in regulating the normal physiological function of the body; therefore, α-Glu activity detection is crucial in clinical studies. In this study, a nickel-based metal-organic framework (Ni-MOF) co-doped with sulfur dots (SDs) and iron (Fe) was designed and constructed for the colorimetric detection of α-Glu. The SDs/Fe/Ni-MOF shows a very low Michaelis-Menten constant (0.0466 mM) for H2O2, suggesting a very high affinity for H2O2. Additionally, the free radicals generated by the nanozyme-catalyzed reaction were analyzed, and the feasibility of the nanozyme-catalyzed process was further verified using density functional theory. The bimetallic (Fe and Ni) can improve the catalytic activity of the material, and sulfur can improve the affinity with the substrate to further enhance the catalytic performance. Notably, hydroquinone (HQ) inhibits nanozyme activity, whereas α-Glu hydrolyzes alpha-arbutin (α-Arb) and subsequently produces HQ. Therefore, this study developed a method for detecting α-Glu activity using α-Arb as a substrate. This method has high selectivity, a wide detection range (1.00-100 U L-1), and a low detection limit (0.525 U L-1). Finally, the method was used to α-Glu activity detected in serum samples with good accuracy. This study provides a new method for the detection of α-Glu.


Assuntos
Peróxido de Hidrogênio , Estruturas Metalorgânicas , alfa-Glucosidases , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Colorimetria/métodos , Ferro , Níquel , Enxofre/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA