Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Med Mol Morphol ; 56(1): 69-77, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36344703

RESUMO

Superficial CD34-positive fibroblastic tumor (SCPFT) is a fibroblastic/myofibroblastic soft tissue tumor of rarely metastasizing intermediate malignancy. Some recent studies have described a relationship between SCPFT and PRDM10-rearranged soft tissue tumor (PRT) based on SynCAM3 and PRDM10 expression on immunohistochemistry. We performed CD34, cytokeratin AE1/AE3, SynCAM3, and PRDM10 immunohistochemistry in SCPFT and its histological mimics, including myxoinflammatory fibroblastic sarcoma (MIFS), superficially localized myxofibrosarcoma (MFS), and undifferentiated pleomorphic sarcoma. We also examined cyclin D1 expression because it is expressed in MIFS and MFS. We conducted fluorescence in situ hybridization (FISH) of PRDM10 rearrangement in SCPFT cases. On immunohistochemistry, only SCPFT showed strong and diffuse SynCAM3 expression. SCPFT also exhibited strong nuclear and weak cytoplasmic cyclin D1 expression, which was similar to that observed in MIFS. Two of five SCPFT cases exhibited nuclear PRDM10 expression. FISH revealed PRDM10 split signals in 44% and 24% of tumor cells in two SCPFT cases showing nuclear PRDM10 expression on immunohistochemistry, respectively. A minority of non-SCPFT cases showed focal SynCAM3 expression, but a combination of SynCAM3 and cyclin D1 in addition to CD34 and cytokeratin AE1/AE3 may be useful for the differential diagnosis of SCPFT and its histological mimics.


Assuntos
Fibrossarcoma , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Humanos , Imuno-Histoquímica , Ciclina D1 , Hibridização in Situ Fluorescente , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/patologia , Fibrossarcoma/patologia , Queratinas , Biomarcadores Tumorais
2.
J Neurosci ; 41(7): 1393-1400, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33397712

RESUMO

Cell adhesion proteins of the Cadm (SynCAM/Necl) family regulate myelination and the organization of myelinated axons. In the peripheral nervous system (PNS), intercellular contact between Schwann cells and their underlying axons is believed to be mediated by binding of glial Cadm4 to axonal Cadm3 or Cadm2. Nevertheless, given that distinct neurons express different combinations of the Cadm proteins, the identity of the functional axonal ligand for Cadm4 remains to be determined. Here, we took a genetic approach to compare the phenotype of Cadm4 null mice, which exhibit abnormal distribution of Caspr and Kv1 potassium channels, with mice lacking different combinations of Cadm1-Cadm3 genes. We show that in contrast to mice lacking the single Cadm1, Cadm2, or Cadm3 genes, genetic ablation of all three phenocopies the abnormalities detected in the absence of Cadm4. Similar defects were observed in double mutant mice lacking Cadm3 and Cadm2 (i.e., Cadm3-/-/Cadm2-/-) or Cadm3 and Cadm1 (i.e., Cadm3-/-/Cadm1-/-), but not in mice lacking Cadm1 and Cadm2 (i.e., Cadm1-/-/Cadm2-/-). Furthermore, axonal organization abnormalities were also detected in Cadm3 null mice that were heterozygous for the two other axonal Cadms. Our results identify Cadm3 as the main axonal ligand for glial Cadm4, and reveal that its absence could be compensated by the combined action of Cadm2 and Cadm1.SIGNIFICANCE STATEMENT Myelination by Schwann cells enables fast conduction of action potentials along motor and sensory axons. In these nerves, Schwann cell-axon contact is mediated by cell adhesion molecules of the Cadm family. Cadm4 in Schwann cells regulates axonal ensheathment and myelin wrapping, as well as the organization of the axonal membrane, but the identity of its axonal ligands is not clear. Here, we reveal that Cadm mediated axon-glia interactions depend on a hierarchical adhesion code that involves multiple family members. Our results provide important insights into the molecular mechanisms of axon-glia communication, and the function of Cadm proteins in PNS myelin.


Assuntos
Axônios/metabolismo , Molécula 1 de Adesão Celular/deficiência , Moléculas de Adesão Celular/deficiência , Comunicação Celular/fisiologia , Imunoglobulinas/deficiência , Fibras Nervosas Mielinizadas/metabolismo , Neuroglia/metabolismo , Animais , Molécula 1 de Adesão Celular/genética , Moléculas de Adesão Celular/genética , Imunoglobulinas/genética , Camundongos , Camundongos Knockout , Nervos Periféricos/metabolismo
3.
Calcif Tissue Int ; 102(3): 329-336, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29134237

RESUMO

The central nervous system is widely known to exert control over our systemic physiology via several mechanisms including the regulation of skeletal metabolism. Neuronal circuits within the hypothalamus have been shown to impact bone mass via leptin-dependent and independent mechanisms; however, the full extent to which the brain controls bone homeostasis is not known. We previously identified cell adhesion molecule1 (Cadm1) as a regulator of body weight and energy homeostasis via its expression in multiple regions of the brain. Here, we show that loss of Cadm1 expression in excitatory neurons results in increased leptin sensitivity in addition to a concomitant reduction in bone mass. Femoral length, bone mineral content, diaphyseal cross-sectional area, and bone strength were all lower in Cadm1-deficient animals. Conversely, inducing expression of Cadm1 in excitatory neurons decreased leptin sensitivity and increased femoral length, bone mineral content, and diaphyseal cross-sectional area. Together, these results illustrate an essential role for this synaptic protein in the neuronal regulation of skeletal bone metabolism.


Assuntos
Osso e Ossos/metabolismo , Molécula 1 de Adesão Celular/deficiência , Moléculas de Adesão Celular Neuronais/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Animais , Peso Corporal/fisiologia , Densidade Óssea/genética , Densidade Óssea/fisiologia , Metabolismo Energético/genética , Homeostase/genética , Camundongos , Obesidade/genética , Obesidade/metabolismo
4.
J Neurosci ; 36(28): 7464-75, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27413156

RESUMO

UNLABELLED: Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. SIGNIFICANCE STATEMENT: This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.


Assuntos
Região CA3 Hipocampal/citologia , Moléculas de Adesão Celular/metabolismo , Regulação da Expressão Gênica/genética , Imunoglobulinas/metabolismo , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Animais , Região CA3 Hipocampal/diagnóstico por imagem , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Feminino , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulinas/genética , Técnicas In Vitro , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/genética , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/efeitos dos fármacos , Parvalbuminas/metabolismo , Piridazinas/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Fatores de Tempo
5.
Am J Physiol Endocrinol Metab ; 310(11): E874-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27072493

RESUMO

Contact between ß-cells is necessary for their normal function. Identification of the proteins mediating the effects of ß-cell-to-ß-cell contact is a necessary step toward gaining a full understanding of the determinants of ß-cell function and insulin secretion. The secretory machinery of the ß-cells is nearly identical to that of central nervous system (CNS) synapses, and we hypothesize that the transcellular protein interactions that drive maturation of the two secretory machineries upon contact of one cell (or neural process) with another are also highly similar. Two such transcellular interactions, important for both synaptic and ß-cell function, have been identified: EphA/ephrin-A and neuroligin/neurexin. Here, we tested the role of another synaptic cleft protein, CADM1, in insulinoma cells and in rat and human islet ß-cells. We found that CADM1 is a predominant CADM isoform in ß-cells. In INS-1 cells and primary ß-cells, CADM1 constrains insulin secretion, and its expression decreases after prolonged glucose stimulation. Using a coculture model, we found that CADM1 also influences insulin secretion in a transcellular manner. We asked whether extracellular CADM1 interactions exert their influence via the same mechanisms by which they influence neurotransmitter exocytosis. Our results suggest that, as in the CNS, CADM1 interactions drive exocytic site assembly and promote actin network formation. These results support the broader hypothesis that the effects of cell-cell contact on ß-cell maturation and function are mediated by the same extracellular protein interactions that drive the formation of the presynaptic exocytic machinery. These interactions may be therapeutic targets for reversing ß-cell dysfunction in diabetes.


Assuntos
Moléculas de Adesão Celular/metabolismo , Exocitose/fisiologia , Imunoglobulinas/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Sintaxina 1/metabolismo , Animais , Molécula 1 de Adesão Celular , Comunicação Celular/fisiologia , Linhagem Celular , Líquido Extracelular/metabolismo , Humanos , Secreção de Insulina , Ratos , Especificidade da Espécie
6.
J Cell Sci ; 127(Pt 24): 5288-302, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335893

RESUMO

Synaptic cell adhesion molecules (SynCAMs) are crucial for synapse formation and plasticity. However, we have previously demonstrated that SynCAMs are also required during earlier stages of neural circuit formation because SynCAM1 and SynCAM2 (also known as CADM1 and CADM2, respectively) are important for the guidance of post-crossing commissural axons. In contrast to the exclusively homophilic cis-interactions reported by previous studies, our previous in vivo results suggested the existence of heterophilic cis-interactions between SynCAM1 and SynCAM2. Indeed, as we show here, the presence of homophilic and heterophilic cis-interactions modulates the interaction of SynCAMs with trans-binding partners, as observed previously for other immunoglobulin superfamily cell adhesion molecules. These in vitro findings are in agreement with results from in vivo studies, which demonstrate a role for SynCAMs in the formation of sensory neural circuits in the chicken embryo. In the absence of SynCAMs, selective axon-axon interactions are perturbed resulting in aberrant pathfinding of sensory axons.


Assuntos
Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Células Receptoras Sensoriais/metabolismo , Sinapses/metabolismo , Animais , Axônios/ultraestrutura , Adesão Celular , Embrião de Galinha , Gânglios Espinais/citologia , Gânglios Espinais/ultraestrutura , Técnicas de Silenciamento de Genes , Substância Cinzenta/metabolismo , Cones de Crescimento/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Neuritos/metabolismo , Neurônios Aferentes/metabolismo , Ligação Proteica , Células Receptoras Sensoriais/ultraestrutura , Medula Espinal/metabolismo
7.
CNS Neurosci Ther ; 30(1): e14554, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105652

RESUMO

AIMS: Sevoflurane is widely used for general anesthesia in children. Previous studies reported that multiple neonatal exposures to sevoflurane can induce long-term cognitive impairment in adolescent rats, but the underlying mechanisms were not defined. METHODS: Postnatal day 6 (P6) to P8 rat pups were exposed to 30% oxygen with or without 3% sevoflurane balanced with air. The Y maze test (YMT) and Morris water maze (MWM) tests were performed in some cohorts from age P35 to assess cognitive functions, and their brain samples were harvested at age P14, 21, 28, 35, and 42 for measurements of various molecular entities and in vivo electrophysiology experiments at age P35. RESULTS: Sevoflurane exposure resulted in cognitive impairment that was associated with decreased synCAM1 expression in parvalbumin (PV) interneurons, a reduction of PV phenotype, disturbed gamma oscillations, and dendritic spine loss in the hippocampal CA3 region. Enriched environment (EE) increased synCAM1 expression in the PV interneurons and attenuated sevoflurane-induced cognitive impairment. The synCAM1 overexpression by the adeno-associated virus vector in the hippocampal CA3 region restored sevoflurane-induced cognitive impairment, PV phenotype loss, gamma oscillations decrease, and dendritic spine loss. CONCLUSION: Our data suggested that neonatal sevoflurane exposure results in cognitive impairment through decreased synCAM1 expression in PV interneurons in the hippocampus.


Assuntos
Disfunção Cognitiva , Parvalbuminas , Humanos , Criança , Animais , Ratos , Sevoflurano/toxicidade , Animais Recém-Nascidos , Parvalbuminas/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Interneurônios/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo
8.
Neurochem Int ; 165: 105522, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966820

RESUMO

The GABA transporter GAT1 regulates brain inhibitory neurotransmission and it is considered a potential therapeutic target for the treatment of wide spectrum of neurological diseases including epilepsy, stroke and autism. Syntenin-1 binds to syntaxin 1A, which is known to regulate the plasma membrane insertion of several neurotransmitter transporters. Previously, a direct interaction of syntenin-1 with the glycine transporter GlyT2 was reported. Here, we show that the GABA transporter GAT1 also directly interacts with syntenin-1, involving both unidentified protein interaction interface and the GAT1 C-terminal PDZ binding motif interacting mainly with syntenin-1 PDZ domain 1. The PDZ interaction was eliminated by the mutation of GAT1 isoleucine 599 and tyrosine 598 located in PDZ positions 0 and -1, respectively. This indicates an unconventional PDZ interaction and possible regulation of the transporter PDZ motif via tyrosine phosphorylation. Whole syntenin-1 protein fused to GST protein and immobilised on glutathione resin coprecipitated intact GAT1 transporter from an extract of GAT1 transfected neuroblastoma N2a cells. This coprecipitation was inhibited by tyrosine phosphatases inhibitor pervanadate. The fluorescence tagged GAT1 and syntenin-1 colocalized upon coexpression in N2a cells. The above results show that syntenin-1 might be, in addition to GlyT2, directly involved in the trafficking of GAT1 transporter.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA , Proteínas do Tecido Nervoso , Sinteninas , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Sinteninas/genética , Sinteninas/metabolismo , Tirosina/metabolismo , Animais , Camundongos , Linhagem Celular
9.
Iran J Basic Med Sci ; 26(12): 1444-1448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970442

RESUMO

Objectives: Diabetes is a metabolic disorder that affects the development of the central nervous system and plays an important role in learning and memory. Diabetes increases the reactive oxygen species (ROS) level in cells and changes the expression of several genes, including SYP, BDNF, PAX7, and SYNCAM1, through the FOXO transcription factor. This study was done to assess the effect of diabetes on morphometric indexes of the cerebellar cortex and gene expression in mice. Materials and Methods: Diabetes was induced in twelve adult, male C57BL mice using an injection of streptozotocin. After two months, the mice were dissected, and the cerebellum was stored for further analysis. For the morphometric analysis, tissue sections were stained with cresyl violet and examined with a light microscope. For gene expression analysis, the RNA was extracted, and cDNA was synthesized. The mRNA levels of SYP, BDNF, PAX7, and SYNCAM1 genes were measured by the real-time PCR method. Results: The thickness of the molecular layer and Purkinje layer, and the number of Purkinje and granular cells in the diabetic group were significantly reduced compared to controls P<0.0 1). The area, perimeter, and diameter of Purkinje cells in the diabetic group were significantly reduced compared to controls P<0.0 1). The expression of PAX7, SYP, and BDNF genes of the diabetic group was significantly reduced. However, SYNCAM1 expression in the cerebellum of the diabetic group was significantly increased compared to controls (P<0.05). Conclusion: Induced diabetes in mice can decrease the expression of memory-related genes in the cerebellum. Also, these genes affect the morphology and thickness of the cerebellum.

10.
Acta Histochem Cytochem ; 45(1): 65-75, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22489106

RESUMO

Recent studies have revealed that signals from neural crest (NC) derivatives regulate the mass, proliferation, and maturation of beta cells in developing fetal pancreas. However, little is known about the cellular distribution of NC derivatives during pancreatic development or the process whereby the developing islets are enclosed. We studied the temporal and spatial distribution of NC derivatives and endocrine cells at each developmental stage. At embryonic day 10.5 (E10.5) of mouse embryo, NC derivatives that migrated to the prospective pancreatic region were distributed in close proximity to pancreatic epithelial cells. As development advanced, most NC derivatives progressively surrounded endocrine rather than exocrine cells, and were distributed in closer proximity to alpha cells rather than to beta cells. At E20, approximately 70% of the NC derivatives enclosing endocrine cells were distributed in close proximity to alpha cells. Moreover, the expression of SynCAM, a Ca(2+)-independent homophilic trans-cell adhesion molecule, was confirmed from E16.5 on and was more remarkable at the cell boundaries of alpha cells and NC derivatives. These findings suggest that NC derivatives might be distributed in close proximity to alpha cells as a result of homophilic binding of SynCAM expressed by alpha cells and NC derivatives during islet development.

11.
Brain Behav ; 10(4): e01587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108449

RESUMO

BACKGROUND: Synaptic cell adhesion molecule 1 (SynCAM1) also known as cell adhesion molecule 1 (CADM1) is a transmembrane cell adhesion protein that operates in a variety of physiological and pathological cellular contexts, and its interaction with the PDZ signalling protein MUPP1 have been previously implicated in autism spectrum disorder (ASD). METHODS: We used in vitro pull-down systems based on the bacterial and mammalian extracts to study SynCAM1/CADM1 PDZ interactions with MUPP1 at various conditions. RESULTS: So far, the investigated interaction of SynCAM1/CADM1 with MUPP1 has been mostly attributed to an unspecified region of MUPP1 PDZ domains 1-5 or exclusively to domain 2, using a yeast two-hybrid system. We also confirmed the single interaction of native synaptosomal CADM1 with PDZ domain 2. However, in this work, using recombinant proteins overexpressed in bacteria, we found an in vitro pull-down conditions in which all first five domains and, to a much lesser extent, MUPP1 domains 7 and 11 significantly interacted with the whole C-terminal domain of SynCAM1/CADM1. These PDZ interactions were confirmed by a pull-down assay using the last seven amino acids of the SynCAM1/CADM1 PDZ motif and using two fusion partners. Multiple interactions were additionally replicated using the continuous N-terminal MUPP1 protein fragment, which included first five PDZ domains, containing either intact or mutated domain 2. CONCLUSIONS: We hypothesize that multiple interactions might exist in vivo, representing transient low-affinity interactions or alternative binding sites on MUPP1 when domain 2 is occupied or occluded by the interaction with other ligands. This newly identified interactions extend the potential genetic mutations, possibly affecting SynCAM1/CADM1/MUPP1 function. Possible reasons for the absence of some of the identified CADM1 PDZ interactions in mammalian extracts are discussed.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Proteínas de Membrana/metabolismo , Domínios PDZ/fisiologia , Sinaptossomos/metabolismo , Animais , Bactérias/metabolismo
12.
Cell Rep ; 26(2): 381-393.e6, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625321

RESUMO

Cortical plasticity peaks early in life and tapers in adulthood, as exemplified in the primary visual cortex (V1), wherein brief loss of vision in one eye reduces cortical responses to inputs from that eye during the critical period but not in adulthood. The synaptic locus of cortical plasticity and the cell-autonomous synaptic factors determining critical periods remain unclear. We here demonstrate that the immunoglobulin protein Synaptic Cell Adhesion Molecule 1 (SynCAM 1/Cadm1) is regulated by visual experience and limits V1 plasticity. Loss of SynCAM 1 selectively reduces the number of thalamocortical inputs onto parvalbumin (PV+) interneurons, impairing the maturation of feedforward inhibition in V1. SynCAM 1 acts in PV+ interneurons to actively restrict cortical plasticity, and brief PV+-specific knockdown of SynCAM 1 in adult visual cortex restores juvenile-like plasticity. These results identify a synapse-specific, cell-autonomous mechanism for thalamocortical visual circuit maturation and closure of the visual critical period.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Células Cultivadas , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Parvalbuminas/genética , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia
13.
Front Cell Neurosci ; 13: 262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275114

RESUMO

Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment, both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system, respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed in vitro co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen, this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients.

14.
Mol Metab ; 8: 180-188, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217450

RESUMO

OBJECTIVE: Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI) and multiple loci near Cell adhesion molecule2 (CADM2), which encodes a mediator of synaptic signaling enriched in the brain. Here we sought to further understand the role of Cadm2 in the pathogenesis of hyperglycemia and weight gain. METHODS: We first analyzed Cadm2 expression in the brain of both human subjects and mouse models and subsequently characterized a loss-of-function mouse model of Cadm2 for alterations in glucose and energy homeostasis. RESULTS: We show that the risk variant rs13078960 associates with increased CADM2 expression in the hypothalamus of human subjects. Increased Cadm2 expression in several brain regions of Lepob/ob mice was ameliorated after leptin treatment. Deletion of Cadm2 in obese mice (Cadm2/ob) resulted in reduced adiposity, systemic glucose levels, and improved insulin sensitivity. Cadm2-deficient mice exhibited increased locomotor activity, energy expenditure rate, and core body temperature identifying Cadm2 as a potent regulator of systemic energy homeostasis. CONCLUSIONS: Together these data illustrate that reducing Cadm2 expression can reverse several traits associated with the metabolic syndrome including obesity, insulin resistance, and impaired glucose homeostasis.


Assuntos
Moléculas de Adesão Celular/genética , Metabolismo Energético , Obesidade/genética , Animais , Peso Corporal , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/fisiologia , Células Cultivadas , Homeostase , Humanos , Hipotálamo/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único
15.
Proteomes ; 6(4)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487426

RESUMO

Synapses are specialized neuronal cell-cell contacts that underlie network communication in the mammalian brain. Across neuronal populations and circuits, a diverse set of synapses is utilized, and they differ in their molecular composition to enable heterogenous connectivity patterns and functions. In addition to pre- and post-synaptic specializations, the synaptic cleft is now understood to be an integral compartment of synapses that contributes to their structural and functional organization. Aiming to map the cleft proteome, this study applied a peroxidase-mediated proximity labeling approach and used the excitatory synaptic cell adhesion protein SynCAM 1 fused to horseradish peroxidase (HRP) as a reporter in cultured cortical neurons. This reporter marked excitatory synapses as measured by confocal microcopy and was targeted to the edge zone of the synaptic cleft as determined using 3D dSTORM super-resolution imaging. Proximity labeling with a membrane-impermeant biotin-phenol compound restricted labeling to the cell surface, and Label-Free Quantitation (LFQ) mass spectrometry combined with ratiometric HRP tagging of membrane vs. synaptic surface proteins was used to identify the proteomic content of excitatory clefts. Novel cleft candidates were identified, and Receptor-type tyrosine-protein phosphatase zeta was selected and successfully validated. This study supports the robust applicability of peroxidase-mediated proximity labeling for synaptic cleft proteomics and its potential for understanding synapse heterogeneity in health and changes in diseases such as psychiatric disorders and addiction.

16.
Methods Mol Biol ; 1538: 29-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27943181

RESUMO

One of the difficulties for studying the mechanisms of synaptogenesis stems from the spatial unpredictability of contact formation between neurons, and the involvement of many parallel adhesive pathways mediating axon/dendrite recognition. To circumvent these limitations, we describe here a method allowing the investigation of synaptic contacts at controlled locations with high precision and statistics. Specifically, primary neurons are cultured on micropatterned substrates comprising arrays of micron-scale dots coated with purified synaptogenic adhesion molecules. Coating the substrates with the homophilic adhesion molecule SynCAM triggers the formation of functional presynaptic structures in axons, while neurexin elicits postsynapses in dendrites from neurons expressing the counter receptor neuroligin. This assay can be combined with various imaging techniques including immunocytochemistry to screen the accumulation of synaptic components, long-term live cell recordings to probe the kinetics of neurite growth and synapse differentiation, as well as high resolution single molecule tracking.


Assuntos
Descoberta de Drogas/métodos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Imunofluorescência , Imagem Molecular/métodos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Receptores de AMPA/metabolismo
17.
Front Mol Neurosci ; 10: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197078

RESUMO

Investigating the roles of synaptogenic adhesion molecules during synapse formation has proven challenging, often due to compensatory functions between additional family members. The synaptic cell adhesion molecules 1-3 (SynCAM1-3) are expressed both pre- and postsynaptically, share highly homologous domains and are synaptogenic when ectopically presented to neurons; yet their endogenous functions during synaptogenesis are unclear. Here we report that SynCAM1-3 are functionally redundant and collectively necessary for synapse formation in cultured hippocampal neurons. Only triple knockdown (KD) of SynCAM1-3 using highly efficient, chained artificial microRNAs (amiRNAs) reduced synapse density and increased synapse area. Electrophysiological recordings of quantal release events supported an increase in synapse size caused by SynCAM1-3 depletion. Furthermore, a combinatorial, mosaic lentiviral approach comparing wild type (WT) and SynCAM1-3 KD neurons in the same culture demonstrate that SynCAM1-3 set synapse number and size through postsynaptic mechanisms. The results demonstrate that the redundancy between SynCAM1-3 has concealed their synaptogenic function at the postsynaptic terminal.

18.
Neuron ; 88(6): 1165-1172, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26687224

RESUMO

The cleft is an integral part of synapses, yet its macromolecular organization remains unclear. We show here that the cleft of excitatory synapses exhibits a distinct density profile as measured by cryoelectron tomography (cryo-ET). Aiming for molecular insights, we analyzed the synapse-organizing proteins Synaptic Cell Adhesion Molecule 1 (SynCAM 1) and EphB2. Cryo-ET of SynCAM 1 knockout and overexpressor synapses showed that this immunoglobulin protein shapes the cleft's edge. SynCAM 1 delineates the postsynaptic perimeter as determined by immunoelectron microscopy and super-resolution imaging. In contrast, the EphB2 receptor tyrosine kinase is enriched deeper within the postsynaptic area. Unexpectedly, SynCAM 1 can form ensembles proximal to postsynaptic densities, and synapses containing these ensembles were larger. Postsynaptic SynCAM 1 surface puncta were not static but became enlarged after a long-term depression paradigm. These results support that the synaptic cleft is organized on a nanoscale into sub-compartments marked by distinct trans-synaptic complexes.


Assuntos
Moléculas de Adesão Celular/fisiologia , Moléculas de Adesão Celular/ultraestrutura , Imunoglobulinas/fisiologia , Imunoglobulinas/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular Neuronais/fisiologia , Moléculas de Adesão Celular Neuronais/ultraestrutura , Células Cultivadas , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/fisiologia , Neurônios/ultraestrutura
19.
J Comp Neurol ; 522(4): 900-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23982969

RESUMO

Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Sinapses/metabolismo , Oxirredutases do Álcool , Análise de Variância , Animais , Animais Recém-Nascidos , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/ultraestrutura , Proteínas Correpressoras , Proteínas de Ligação a DNA/metabolismo , Eletrorretinografia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Imunoglobulinas/genética , Imunoglobulinas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/ultraestrutura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
20.
Neuroscience ; 251: 2-20, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23867772

RESUMO

In the striatum, the dendritic tree of the two main populations of projection neurons, called "medium spiny neurons (MSNs)", are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson's disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of "thin and immature" spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted.


Assuntos
Gânglios da Base/patologia , Transtornos Relacionados ao Uso de Cocaína/patologia , Espinhas Dendríticas/patologia , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/patologia , Animais , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios GABAérgicos , Humanos , Fatores de Transcrição MEF2/metabolismo , Núcleo Accumbens/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA