RESUMO
Neurotoxic side effects of chemotherapy include deficits in attention, memory, and executive functioning. Currently, there are no FDA-approved therapies. In mice, cisplatin causes long-term cognitive deficits, white matter damage, mitochondrial dysfunction, and loss of synaptic integrity. We hypothesized that MSC-derived small extracellular vesicles (sEVs) could restore cisplatin-induced cognitive impairments and brain damage. Animals were injected with cisplatin intraperitoneally and treated with MSC-derived sEVs intranasally 48 and 96 h after the last cisplatin injection. The puzzle box test (PBT) and the novel object place recognition test (NOPRT) were used to determine cognitive deficits. Synaptosomal mitochondrial morphology was analyzed by transmission electron microscopy. Immunohistochemistry using antibodies against synaptophysin and PSD95 was applied to assess synaptic loss. Black-Gold II staining was used to quantify white matter integrity. Our data show that sEVs enter the brain in 30 min and reverse the cisplatin-induced deficits in executive functioning and working and spatial memory. Abnormalities in mitochondrial morphology, loss of white matter, and synaptic integrity in the hippocampus were restored as well. Transcriptomic analysis revealed upregulation of regenerative functions after treatment with sEVs, pointing to a possible role of axonal guidance signaling, netrin signaling, and Wnt/Ca2+ signaling in recovery. Our data suggest that intranasal sEV treatment could become a novel therapeutic approach for the treatment of chemobrain.
Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Vesículas Extracelulares , Camundongos , Animais , Cisplatino/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/terapia , Encéfalo , Transtornos Cognitivos/induzido quimicamenteRESUMO
The lack of effective disease-modifying therapeutics to tackle Alzheimer's disease (AD) is unsettling considering the actual prevalence of this devastating neurodegenerative disorder worldwide. Intermittent hypoxic conditioning (IHC) is a powerful non-pharmacological procedure known to enhance brain resilience. In this context, the aim of the present study was to investigate the potential long-term protective impact of IHC against AD-related phenotype, putting a special focus on cognition and mitochondrial bioenergetics and dynamics. For this purpose, six-month-old male triple transgenic AD mice (3×Tg-AD) were submitted to an IHC protocol for two weeks and the behavioral assessment was performed at 8.5 months of age, while the sacrifice of mice occurred at nine months of age and their brains were removed for the remaining analyses. Interestingly, IHC was able to prevent anxiety-like behavior and memory and learning deficits and significantly reduced brain cortical levels of amyloid-ß (Aß) in 3×Tg-AD mice. Concerning brain energy metabolism, IHC caused a significant increase in brain cortical levels of glucose and a robust improvement of the mitochondrial bioenergetic profile in 3×Tg-AD mice, as mirrored by the significant increase in mitochondrial membrane potential (ΔΨm) and respiratory control ratio (RCR). Notably, the improvement of mitochondrial bioenergetics seems to result from an adaptative coordination of the distinct but intertwined aspects of the mitochondrial quality control axis. Particularly, our results indicate that IHC favors mitochondrial fusion and promotes mitochondrial biogenesis and transport and mitophagy in the brain cortex of 3×Tg-AD mice. Lastly, IHC also induced a marked reduction in synaptosomal-associated protein 25 kDa (SNAP-25) levels and a significant increase in both glutamate and GABA levels in the brain cortex of 3×Tg-AD mice, suggesting a remodeling of the synaptic microenvironment. Overall, these results demonstrate the effectiveness of the IHC paradigm in forestalling the AD-related phenotype in the 3×Tg-AD mouse model, offering new insights to AD therapy and forcing a rethink concerning the potential value of non-pharmacological interventions in clinical practice.
Assuntos
Doença de Alzheimer/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Cognição/fisiologia , Metabolismo Energético/fisiologia , Hipóxia/fisiopatologia , Camundongos Transgênicos/fisiologia , Mitocôndrias/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos/metabolismo , Mitocôndrias/metabolismoRESUMO
We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D.
Assuntos
Doença de Alzheimer , Autofagia/fisiologia , Biomarcadores/metabolismo , Encéfalo , Diabetes Mellitus Tipo 2 , Mitocôndrias/patologia , Sinapses/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismoRESUMO
The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.
Assuntos
Depressão , Microbioma Gastrointestinal , Ácido Homovanílico , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Humanos , Ácido Homovanílico/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , FemininoRESUMO
Alzheimer's disease (AD), the major cause of dementia, is a multifactoral progressive neurodegenerative disorder that currently affects over 43 million people worldwide. The interaction betweengenetic and environmental factors decides pathogenesis and pathological development. The chemical drugs designed for clinical applications on AD have not reached the expected preventive effect so far.Here, we obtained a new evodiamine (Evo) derivative, LE-42, which exhibited lower cytotoxicity in SH-SY5Y cells and HepaG2 cells than that of Evo. The LD50 of LE-42 in SH-SY5Y cells and HepaG2 cells was increased by 9 folds and 14 folds than Evo, respectively. The LE-42 also exhibited much more potent effects on anti-oxidation and anti-cytotoxicity of AßOs than Evo. The LE-42 significantly improved the working memory, spatial learning, and memory of the 3×Tg AD mice, and the pharmacodynamic dose of LE-42 on AD mice was increased by 500 folds than that of Evo. LE-42 significantly improved the Tau hyperphosphorylation, a typical pathological feature in 3×Tg AD mice. The LE-42 restored the JAK2/STAT3 pathway's dysfunction and upregulated the expression of GluN1, GluA2, SYN, and PSD95, subsequentially improving the synaptic integrity in 3×Tg mice. The activation of the JAK2/STAT3 axis by LE-42 was a possible mechanism for a therapeutic effect on the AD mice.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Quinazolinas , Sinapses , Animais , Quinazolinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Camundongos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Humanos , Camundongos Transgênicos , Modelos Animais de Doenças , Masculino , Fator de Transcrição STAT3/metabolismo , Proteínas tau/metabolismo , Janus Quinase 2/metabolismo , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
Background: Parkinson's disease (PD) is marked by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and cognitive dysfunctions. The molecular mechanisms underlying synaptic alterations in PD remain elusive, with a focus on the role of Itga5 in synaptic integrity and motor coordination and TAT-Itga5 was designed to suppress PTEN activity in this investigation. Methods: This study utilized MPTP-induced PD animal models to investigate the expression and role of Itga5 in the striatum. Techniques included quantitative PCR, Western blotting, immunostaining, CRISPR-CasRx-mediated knockdown, electrophysiological assays, behavioral tests, and mass spectrometry. Results: Itga5 expression was significantly reduced in MPTP-induced PD models. In these models, a marked decrease in dendritic spine density and a shift towards thinner spines in striatal GABA neurons were observed, suggesting impaired synaptic integration. Knockdown of Itga5 resulted in reduced dendritic branching, decreased mushroom spines, and increased thin spines, altering synaptic architecture. Electrophysiological analyses revealed changes in action potential and spontaneous excitatory postsynaptic currents, indicating altered synaptic transmission. Motor behavior assessments showed that Itga5 deficiency led to impairments in fine motor control and coordination. Furthermore, Itga5 was found to interact with PTEN, affecting AKT signaling crucial for synaptic development and motor coordination. Conclusion: The study demonstrates that Itga5 plays a critical role in maintaining synaptic integrity and motor coordination in PD. The Itga5-PTEN-AKT pathway represents a potential therapeutic target for addressing synaptic and motor dysfunctions in PD.
Assuntos
PTEN Fosfo-Hidrolase , Doença de Parkinson , Transdução de Sinais , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Masculino , Camundongos , Corpo Estriado/metabolismo , Camundongos Endogâmicos C57BL , Integrina alfa5/metabolismo , Integrina alfa5/genética , Sinapses/metabolismo , Modelos Animais de DoençasRESUMO
BACKGROUND: Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes. METHODS: Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment. Animals were sacrificed 6 months post-irradiation and tissues were analyzed for neurological and cerebrovascular decrements. RESULTS: The neurological impact of FLASH-RT was analyzed over a 6-month follow-up. FLASH-RT ameliorated neurocognitive decrements induced by CONV-RT and preserved synaptic plasticity and integrity at the electrophysiological (long-term potentiation), molecular (synaptophysin), and structural (Bassoon/Homer-1 bouton) levels in multiple brain regions. The benefits of FLASH-RT were also linked to reduced neuroinflammation (activated microglia) and the preservation of the cerebrovascular structure, by maintaining aquaporin-4 levels and minimizing microglia colocalized to vessels. CONCLUSIONS: Hypofractionated FLASH-RT affords significant and long-term normal tissue protection in the radiosensitive juvenile mouse brain when compared to CONV-RT. The capability of FLASH-RT to preserve critical cognitive outcomes and electrophysiological properties over 6-months is noteworthy and highlights its potential for resolving long-standing complications faced by pediatric brain tumor survivors. While care must be exercised before clinical translation is realized, present findings document the marked benefits of FLASH-RT that extend from synapse to cognition and the microvasculature.
Assuntos
Neoplasias Encefálicas , Humanos , Criança , Masculino , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/etiologia , Dosagem Radioterapêutica , Radioterapia/efeitos adversosRESUMO
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
RESUMO
Considering the fact that melatonin acts as protective agent in various cognitive impairment, we decided to explore the precise effect of pretreatment with melatonin on cognitive function, mitochondrial activity, apoptosis and synaptic integrity in aged rats anesthetized by propofol. We first randomly allocated the thirty Sprague Dawley rats into three groups: Control vehicle-treated group (Con), Propofol-treated group (Pro) and Melatonin + Propofol group (Mel + Pro). The Barnes maze, open field and contextual fear conditioning test were employed to evaluate spatial memory, exploratory behavior and general locomotor activity, and hippocampus-dependent learning and memory ability, respectively. Moreover, mitochondrial function (including reactive oxygen species, mitochondrial membrane potential and ATP levels) and apoptosis were detected in the regions of hippocampus (HIP) and prefrontal cortex (PFC). The results of behavioral tests suggested that melatonin improved propofol-induced memory impairment in aged rats. Melatonin mitigated mitochondrial dysfunction and decreased the apoptotic cell counts in the regions of HIP and PFC. Furthermore, prophylactic melatonin treatment also reversed the propofol-induced inactivation of PKA/CREB/BDNF signaling and synaptic dysfunction. On the whole, our results indicated that melatonin ameliorated the propofol-induced cognitive disorders via attenuating mitochondrial dysfunction, apoptosis, inactivation of PKA/CREB/BDNF signaling and synaptic dysfunction.
Assuntos
Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Melatonina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Propofol/toxicidade , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Hipocampo/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
Chemotherapy-induced cognitive impairment (CICI) is a commonly reported neurotoxic side effect of chemotherapy, occurring in up to 75% cancer patients. CICI manifests as decrements in working memory, executive functioning, attention, and processing speed, and greatly interferes with patients' daily performance and quality of life. Currently no treatment for CICI has been approved by the US Food and Drug Administration. We show here that treatment with a brain-penetrating histone deacetylase 6 (HDAC6) inhibitor for two weeks was sufficient to fully reverse cisplatin-induced cognitive impairments in male mice, as demonstrated in the Y-maze test of spontaneous alternation, the novel object/place recognition test, and the puzzle box test. Normalization of cognitive impairment was associated with reversal of cisplatin-induced synaptosomal mitochondrial deficits and restoration of synaptic integrity. Mechanistically, cisplatin induced deacetylation of the microtubule protein α-tubulin and hyperphosphorylation of the microtubule-associated protein tau. These cisplatin-induced changes were reversed by HDAC6 inhibition. Our data suggest that inhibition of HDAC6 restores microtubule stability and reverses tau phosphorylation, leading to normalization of synaptosomal mitochondrial function and synaptic integrity and thereby to reversal of CICI. Remarkably, our results indicate that short-term daily treatment with the HDAC6 inhibitor was sufficient to achieve prolonged reversal of established behavioral, structural and functional deficits induced by cisplatin. Because the beneficial effects of HDAC6 inhibitors as add-ons to cancer treatment have been demonstrated in clinical trials, selective targeting of HDAC6 with brain-penetrating inhibitors appears a promising therapeutic approach for reversing chemotherapy-induced neurotoxicity while enhancing tumor control.
Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Disfunção Cognitiva , Inibidores Enzimáticos/uso terapêutico , Desacetilase 6 de Histona/metabolismo , Tauopatias/enzimologia , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/enzimologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/sangue , Proteínas de Fluorescência Verde/metabolismo , Desacetilase 6 de Histona/ultraestrutura , Ácidos Hidroxâmicos/sangue , Ácidos Hidroxâmicos/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Pirimidinas/sangue , Pirimidinas/uso terapêutico , Proteínas Recombinantes de Fusão/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/patologia , Sinaptossomos/ultraestrutura , Tauopatias/induzido quimicamente , Tauopatias/tratamento farmacológico , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismoRESUMO
Mutations in the Golgi SNARE (SNAP [soluble NSF attachment protein] receptor) protein Membrin (encoded by the GOSR2 gene) cause progressive myoclonus epilepsy (PME). Membrin is a ubiquitous and essential protein mediating ER-to-Golgi membrane fusion. Thus, it is unclear how mutations in Membrin result in a disorder restricted to the nervous system. Here, we use a multi-layered strategy to elucidate the consequences of Membrin mutations from protein to neuron. We show that the pathogenic mutations cause partial reductions in SNARE-mediated membrane fusion. Importantly, these alterations were sufficient to profoundly impair dendritic growth in Drosophila models of GOSR2-PME. Furthermore, we show that Membrin mutations cause fragmentation of the presynaptic cytoskeleton coupled with transsynaptic instability and hyperactive neurotransmission. Our study highlights how dendritic growth is vulnerable even to subtle secretory pathway deficits, uncovers a role for Membrin in synaptic function, and provides a comprehensive explanatory basis for genotype-phenotype relationships in GOSR2-PME.
Assuntos
Dendritos/metabolismo , Mutação , Epilepsias Mioclônicas Progressivas/genética , Proteínas Qb-SNARE/genética , Via Secretória/genética , Sinapses/metabolismo , Animais , Dendritos/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Estudos de Associação Genética , Complexo de Golgi/metabolismo , Humanos , Masculino , Fusão de Membrana , Epilepsias Mioclônicas Progressivas/metabolismo , Epilepsias Mioclônicas Progressivas/patologia , Fenótipo , Cultura Primária de Células , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sinapses/patologia , Adulto JovemRESUMO
Asiaticoside (AS), a triterpenoid saponin isolated from the Indian medicinal herb Centella asiatica is known to exert a neuroprotective effect by attenuating the neurobehavioral, neurochemical and pathological changes in animal models. However, its potential neuroprotection in rotenone-induced hemiparkinsonism which implicates phospholipid-mediated neurotransmission remains unclear. Therefore, we have investigated the neuroprotective effects of AS in rat model of ROT-infused hemiparkinsonism with respect to phosphoinositides-assisted cytodynamics and synaptic function. Adult male Sprague-Dawley rats (250-300g) were distributed randomly into 6 groups, with 6 rats in each group: Sham control, Vehicle control (DMSO-0.1%), ROT-infused group (6µg/µl/kg), AS-treated group (50mg/kg/day), Drug (AS) control and Levodopa (l-DOPA)-treated group (6mg/kg/day). At the end of the experimental period, the rats were sacrificed after performing behavioral analyses and the striatum regions were dissected out. Phosphoinositides (PI) are involved in intrinsic membrane signals that regulate intracellular membrane trafficking vesicle and endocytosis. We have assessed mRNA and protein expressions of genes involved in PI-mediated signaling and also in synaptic function (PI3K, PDK 1, PEBP, Stx 1A and TH) in addition to the levels of neurotransmitters and the enzymatic antioxidant profile. AS caused an improved working memory and motor co-ordination in the ROT group. It alters the levels of neurotransmitters (p<0.01), the expression of mRNA and protein assessed which were significantly affected (P<0.001) by rotenone, thus exhibiting its intervention in the progression of neurodegeneration. We demonstrate that AS can mediate distinct function in PI-assisted vesicle endocytosis, cytoprotective signaling and in the synaptic function thereby mitigating the ROT-infused hemiparkinsonism, however, its specific regulatory role remains to be unraveled.