Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 665: 187-194, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37163939

RESUMO

The autonomic nervous system plays an important role in the regulation of peripheral inflammation. Sympathetic nervous activation stimulates inflammatory gene expression and cytokines, whereas parasympathetic nervous activation suppresses the production of inflammatory cytokines by immune cells. However, most studies on the relationship between the autonomic nervous system and immune processes have analyzed a single branch of the autonomic nerves in isolation. Therefore, this study aimed to examine the effects of sympathetic and parasympathetic stimulation on macrophages, which are controlled by autonomic regulation. Macrophages were stimulated with lipopolysaccharide (LPS) to induce TNF-α. Then, the effects of ß2 adrenergic receptor and α7 nicotinic acetylcholine receptor activation on TNF-α production were assessed using concentration-dependent assays. RNA-seq data were also used to identify genes whose expression was enhanced by parasympathetic and sympathetic stimulation. The simultaneous activation of ß2 adrenergic receptors and α7 nicotinic acetylcholine receptors suppressed LPS-induced TNF-α production in a concentration-dependent manner. Moreover, simultaneous activation of these receptors had synergistic anti-inflammatory effects and induced Tspan13 expression, thereby contributing to anti-inflammatory mechanisms in macrophages. Our study revealed the synergistic anti-inflammatory effects of the parasympathetic and sympathetic stimulation of macrophages. Our results suggest that targeting both sympathetic and parasympathetic signaling is a promising therapeutic approach for inflammatory diseases.


Assuntos
Receptores Nicotínicos , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7 , Macrófagos , Citocinas , Anti-Inflamatórios , Tetraspaninas
2.
Nutrients ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960014

RESUMO

Mounting evidence has shown that single-targeted therapy might be inadequate to achieve satisfactory effects. Thus, drug combinations are gaining attention as they can regulate multiple targets to obtain more beneficial effects. Heat shock protein 90 (HSP90) is a molecular chaperone that assists the protein assembly and folding of client proteins and maintains their stability. Interfering with the interaction between HSP90 and its client proteins by inhibiting the latter's activity may offer a new approach toward combination therapy. The HSP90 client protein AKT plays an important role in the inflammatory response syndrome caused by infections. In this study, the dietary flavone baicalein was identified as a novel inhibitor of HSP90 that targeted the N-terminal ATP binding pocket of HSP90 and hindered the chaperone cycle, resulting in AKT degradation. Combining baicalein with genipin, which was extracted from Gardenia jasminoides, could inhibit the pleckstrin homology domain of AKT, significantly increasing the anti-inflammatory effects both in vitro and in vivo. This synergistic effect was attributed to the reduction in AKT expression and phosphorylation. Thus, elucidating the mechanism underlying this effect will provide a new avenue for the clinical application and development of synergistic anti-inflammatory drugs.


Assuntos
Flavanonas/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Iridoides/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Colagogos e Coleréticos/administração & dosagem , Colagogos e Coleréticos/farmacologia , Dieta , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Flavanonas/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Iridoides/administração & dosagem , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Pseudomonas aeruginosa , Células RAW 264.7 , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA