Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Semin Immunol ; 66: 101725, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706520

RESUMO

T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Epitopos de Linfócito T , SARS-CoV-2 , Antígenos de Histocompatibilidade Classe I
2.
Diabetologia ; 61(11): 2252-2258, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30209538

RESUMO

Immune biomarkers of type 1 diabetes are many and diverse. Some of these, such as the autoantibodies, are well established but not discriminative enough to deal with the heterogeneity inherent to type 1 diabetes progression. As an alternative, high hopes are placed on T cell assays, which give insight into the cells that actually target the beta cell or play a crucial role in maintaining tolerance. These assays are approaching a level of robustness that may allow for solid conclusions on both disease progression and therapeutic efficacy of immune interventions. In addition, 'omics' approaches to biomarker discovery are rapidly progressing. The potential emergence of novel biomarkers creates a need for the introduction of bioinformatics and 'big data' analysis systems for the integration of the multitude of biomarker data that will be available, to translate these data into clinical tools. It is worth noting that it is unlikely that the same markers will apply to all individuals. Instead, individualised signatures of biomarkers, combining autoantibodies, T cell profiles and other biomarkers, will need to be used to classify at-risk patients into various categories, thus enabling personalised prediction, prevention and treatment approaches. To achieve this goal, the standardisation of assays for biomarker discovery, the integration of analyses and data from biomarker studies and, most importantly, the careful clinical characterisation of individuals providing samples for these studies are critical. Longitudinal sample-collection initiatives, like INNODIA, should lead to novel biomarker discovery, not only providing a better understanding of type 1 diabetes onset and progression, but also yielding biomarkers of therapeutic efficacy of interventions to prevent or arrest type 1 diabetes.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Animais , Autoanticorpos/metabolismo , Biologia Computacional , Diabetes Mellitus Tipo 1/imunologia , Humanos
3.
Front Nutr ; 9: 1049623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741992

RESUMO

Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.

4.
Expert Rev Clin Immunol ; 17(5): 421-430, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33745411

RESUMO

Introduction: Diagnostic tests play a critical role in the management of Sars-CoV-2, the virus responsible for COVID-19. There are two groups of tests, which are in widespread use to identify patients who have contracted the virus. The commonly used reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) test becomes negative once viral shedding ceases by approximately 2-3weeks. Antibody tests directed to viral antigens become positive after the second week of infection. IgG antibody responses to the virus are muted in children, pregnant females, and those with mild symptoms. IgA and IgM antibodies rapidly wane, although IgG antibodies directed to the receptor-binding domain (RBD) of the spike (S) glycoprotein are more durable. Current data show variability in the sensitivity of commercial and in-house antibody tests to SARS-CoV-2.Areas covered: The role of T cells in acute illness is uncertain, but long-term protection against the virus may rely on memory T cell responses. Measuring memory T cell responses is important for retrospective confirmation of cases, who may have been infected early in the pandemic before reliable RT-qPCR tests were available and whose SARS-CoV-2 antibodies may have become undetectable. Relevant peer-reviewed published references from PubMed are included up to 15 March 2021.Expert opinion: After surveying the literature, the authors present the case for urgent development of diagnostic T cell assays for SARS-CoV-2 by accredited laboratories.


Assuntos
COVID-19/diagnóstico , COVID-19/imunologia , Memória Imunológica , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Humanos , Imunoensaio
5.
J Allergy Clin Immunol Pract ; 9(10): 3575-3583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182162

RESUMO

COVID-19 has had a calamitous effect on the global community. Despite intense study, the immunologic response to the infection is only partially understood. In addition to older age and ethnicity, patients with comorbidities including obesity, diabetes, hypertension, coronary artery disease, malignancy, renal, and pulmonary disease may experience severe outcomes. Some patients with primary immunodeficiency (PID) and secondary immunodeficiency also appear to be at increased risk from COVID-19. In addition to vulnerability to SARS-CoV-2, patients with PIDs often have chronic pulmonary disease and may not respond to vaccines, which exacerbates their long-term risk. Patients with common variable immunodeficiency disorders, the most frequent symptomatic PID in adults and children, have a spectrum of B- and T-cell defects. It may be possible to stratify their risk for severe COVID-19 based on age, ethnicity, the severity of the T-cell defect, and the presence of other comorbidities. Patients with common variable immunodeficiency disorders and other immunodeficiencies are at risk for Chronic COVID-19, a dangerous stalemate between a suboptimal immune response and SARS-CoV-2. Intra-host viral evolution could result in the rapid emergence of vaccine-resistant mutants and variants of high consequence; it is a public health emergency. Vaccination and prevention of Chronic COVID-19 in immunodeficient patients is therefore of the utmost priority. Having a reliable diagnostic assay for T-cell immunity to SARS-CoV-2 is critical for evaluating responses to vaccines in these patients. New treatments for SARS-CoV-2 such as NZACE2-Patari are likely to be particularly beneficial for immunodeficient patients, especially those who fail to mount a robust T-cell response to COVID-19 vaccines.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Idoso , Vacinas contra COVID-19 , Imunodeficiência de Variável Comum/epidemiologia , Humanos , SARS-CoV-2 , Linfócitos T
6.
Cells ; 11(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011644

RESUMO

BACKGROUND: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. METHODS: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. RESULTS: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. INTERPRETATION: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.


Assuntos
Alérgenos/imunologia , Pele/imunologia , Linfócitos T/imunologia , Antígenos/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Methods Enzymol ; 631: 195-221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31948547

RESUMO

In vitro cellular assays analyzing antigen-specific T cells are characterized by their high complexity and require controlled conditions to lower experimental variations. Without standard cellular reagents, it is difficult to compare results over time and across institutions. To overcome this problem, a simple and robust technology was developed to generate TCR-engineered reference samples (TERS) containing defined numbers of antigen-specific T cells. Utilization of TERS enables performance control of three main T-cell assays: MHC-peptide multimer staining, IFN-γ ELISpot and cytokine flow cytometry. TERS continuously deliver stable results and can be stored for longer periods of time. Here, an optimized manufacturing protocol, based on the electroporation of stable T-cell receptor in vitro-transcribed mRNA, is provided for versatile in-house production of TERS. Included are a guideline to optimize the electroporation settings on locally available electroporation devices and a step-by-step protocol for the production process.


Assuntos
Eletroporação , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Humanos , RNA Mensageiro
8.
J Immunol Methods ; 458: 74-82, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684430

RESUMO

Cell-based assays to monitor antigen-specific T-cell responses are characterized by their high complexity and should be conducted under controlled conditions to lower multiple possible sources of assay variation. However, the lack of standard reagents makes it difficult to directly compare results generated in one lab over time and across institutions. Therefore TCR-engineered reference samples (TERS) that contain a defined number of antigen-specific T cells and continuously deliver stable results are urgently needed. We successfully established a simple and robust TERS technology that constitutes a useful tool to overcome this issue for commonly used T-cell immuno-assays. To enable users to generate large-scale TERS, on-site using the most commonly used electroporation (EP) devices, an RNA-based kit approach, providing stable TCR mRNA and an optimized manufacturing protocol were established. In preparation for the release of this immuno-control kit, we established optimal EP conditions on six devices and initiated an extended RNA stability study. Furthermore, we coordinated on-site production of TERS with 4 participants. Finally, a proficiency panel was organized to test the unsupervised production of TERS at different laboratories using the kit approach. The results obtained show the feasibility and robustness of the kit approach for versatile in-house production of cellular control samples.


Assuntos
Bioensaio/normas , Engenharia Celular/métodos , RNA Mensageiro/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Bioensaio/métodos , Buffy Coat/citologia , Técnicas de Cultura de Células/métodos , Engenharia Celular/instrumentação , Eletroporação/instrumentação , Eletroporação/métodos , Estudos de Viabilidade , Antígeno HLA-A2/imunologia , Humanos , Separação Imunomagnética/instrumentação , Separação Imunomagnética/métodos , Estabilidade de RNA , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Padrões de Referência , Linfócitos T/metabolismo
9.
ALTEX ; 35(2): 179-192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28968481

RESUMO

Significant progress has been made in the development and validation of non-animal test methods for skin sensitization assessment. At present, three of the four key events of the Adverse Outcome Pathway (AOP) are assessable by OECD-accepted in vitro methods. The fourth key event describes the immunological response in the draining lymph node where activated dendritic cells present major histocompatibility complex-bound chemically modified peptides to naive T cells, thereby priming the proliferation of antigen-specific T cells. Despite substantial efforts, modelling and assessing this adaptive immune response to sensitizers with in vitro T cell assays still represents a challenge. The Cosmetics Europe Skin Tolerance Task Force organized a workshop, bringing together academic researchers, method developers, industry representatives and regulatory stakeholders to review the scientific status of T cell-based assays, foster a mutual scientific understanding and conceive new options to assess T cell activation. Participants agreed that current T cell assays have come a long way in predicting immunogenicity, but that further investment and collaboration is required to simplify assays, optimize their sensitivity, better define human donor-to-donor variability and evaluate their value to predict sensitizer potency. Furthermore, the potential role of T cell assays in AOP-based testing strategies and subsequent safety assessment concepts for cosmetic ingredients was discussed. It was agreed that it is currently difficult to anticipate uses of T cell assay data for safety assessment and concluded that experience from case studies on real-life risk assessment scenarios is needed to further consider the usefulness of assessing the fourth AOP key event.


Assuntos
Alérgenos/análise , Bioensaio , Cosméticos/análise , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T , Rotas de Resultados Adversos , Qualidade de Produtos para o Consumidor , Humanos , Técnicas In Vitro/métodos , Técnicas In Vitro/normas , Pele/efeitos dos fármacos , Testes Cutâneos/normas , Testes Cutâneos/tendências
10.
EBioMedicine ; 7: 278-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27322481

RESUMO

BACKGROUND: We report a first-in-human trial evaluating safety and immunogenicity of a recombinant BCG, AERAS-422, over-expressing TB antigens Ag85A, Ag85B, and Rv3407 and expressing mutant perfringolysin. METHODS: This was a randomized, double-blind, dose-escalation trial in HIV-negative, healthy adult, BCG-naïve volunteers, negative for prior exposure to Mtb, at one US clinical site. Volunteers were randomized 2:1 at each dose level to receive a single intradermal dose of AERAS-422 (>10(5)-<10(6)CFU=low dose, ≥10(6)-<10(7)CFU=high dose) or non-recombinant Tice BCG (1-8×10(5)CFU). Randomization used an independently prepared randomly generated sequence of treatment assignments. The primary and secondary outcomes were safety and immunogenicity, respectively, assessed in all participants through 182days post-vaccination. ClinicalTrials.gov registration number: NCT01340820. FINDINGS: Between Nov 2010 and Aug 2011, 24 volunteers were enrolled (AERAS-422 high dose, n=8; AERAS-422 low dose, n=8; Tice BCG, n=8); all were included in the safety and immunogenicity analyses. All 24 subjects had at least one adverse event, primarily expected local reactions. High dose AERAS-422 vaccination induced Ag85A- and Ag85B-specific lymphoproliferative responses and marked anti-mycobacterial activity in a whole blood bactericidal activity culture assay (WBA), but was associated with varicella zoster virus (VZV) reactivation in two vaccinees. These volunteers displayed high BCG-specific IFN-γ responses pre- and post-vaccination possibly predisposing them to autocrine/paracrine negative regulation of immune control of latent VZV. A systems biology transcriptomal approach identified positive correlations between post-vaccination T cell expression modules and WBA, and negative correlations between post-vaccination monocyte expression modules and WBA. The expression of one key macrophage marker (F4/80) was constitutively elevated in the two volunteers with zoster. INTERPRETATION: The unexpected development of VZV in two of eight healthy adult vaccine recipients resulted in discontinuation of AERAS-422 vaccine development. Immunological and transcriptomal data identified correlations with the development of TB immunity and VZV that require further investigation. FUNDING: Aeras, FDA, Bill and Melinda Gates Foundation.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Herpesvirus Humano 3/fisiologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Aciltransferases/imunologia , Aciltransferases/metabolismo , Adulto , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Vacina BCG/efeitos adversos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/metabolismo , Humanos , Masculino , Vacinas Sintéticas/efeitos adversos , Ativação Viral , Adulto Jovem
11.
Methods Mol Biol ; 1346: 27-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26542713

RESUMO

The ELISpot, a heterogeneous immunoassay, is widely used for detection of low abundant analytes. It is a reliable and robust assay to monitor responses of the immune system at the single-cell level by capturing secreted molecules of interest with specific, membrane-bound antibodies. Those molecules are then made visible by a cascade of ELISA-related development steps. The final results are distinct spots on the membrane as an imprint of the cell secreting the captured molecules, not only allowing their quantification but also providing insight on the kinetics and strength of secretion. This chapter describes the optimized protocol steps of the ELISpot technique, important improvements and tools available for the community, and the current expansion of the technique into polyfunctional cell analysis.


Assuntos
Linfócitos B/imunologia , ELISPOT/métodos , Análise de Célula Única/métodos , Linfócitos T/imunologia , Linfócitos B/citologia , Humanos , Interferon gama/análise , Interferon gama/imunologia , Interleucina-2/análise , Interleucina-2/imunologia , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA