Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 92(7): e0007224, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38899880

RESUMO

Invasive fungal infections impose an enormous clinical, social, and economic burden on humankind. One of the most common species responsible for invasive fungal infections is Candida albicans. More than 30% of patients with disseminated candidiasis fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 medications that antagonize the activity of the azoles on C. albicans. Although gain-of-function mutations responsible for antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impacts C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to seven azole antagonists affects C. albicans phenotype and capacity to cause disease. Most of the azole antagonists appear to have little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also aggravated the disseminated C. albicans infections in mice. This effect was abrogated in immunosuppressed mice, indicating that it is at least in part dependent upon host immune responses. Collectively, these data provide proof of principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.


Assuntos
Antifúngicos , Aripiprazol , Candida albicans , Candidíase , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Animais , Camundongos , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Virulência , Feminino , Azóis/farmacologia , Modelos Animais de Doenças
2.
Antimicrob Agents Chemother ; : e0002224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624217

RESUMO

Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.

3.
Microb Drug Resist ; 30(7): 288-296, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38770776

RESUMO

Candidiasis is a common fungal infection caused by Candida species, with Candida albicans being the most prevalent. Resistance to azole drugs, commonly used to treat Candida infections, poses a significant challenge. Transcriptional activator candidate 1 (TAC1) gene has emerged as a key player in regulating drug resistance in C. albicans. This review explores the structure and function of the TAC1 gene and its role in azole resistance. This gene encodes a transcription factor that controls the expression of genes involved in drug resistance, such as efflux pump genes (CDR1, CDR2, and MDR1) and ERG11. Mutations in TAC1 can increase these genes' expression and confer resistance to azoles. Various TAC1 gene mutations, mostly gain-of-function mutations, have been identified, which upregulate CDR1 and CDR2 expression, resulting in azole resistance. Understanding the mechanisms of azole resistance mediated by the TAC1 gene is crucial for the strategies in the effective antifungal development pipeline.


Assuntos
Antifúngicos , Azóis , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Antifúngicos/farmacologia , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética , Candidíase/tratamento farmacológico , Candidíase/microbiologia
4.
mSphere ; 9(7): e0027024, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860767

RESUMO

Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE: Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fosforilcolina , Fatores de Transcrição , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Front Plant Sci ; 14: 1320638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38356867

RESUMO

Introduction: Plants can adapt their growth to optimize light capture in competitive environments, with branch angle being a crucial factor influencing plant phenotype and physiology. Decreased branch angles in cereal crops have been shown to enhance productivity in high-density plantings. The Tiller Angle Control (TAC1) gene, known for regulating tiller inclination in rice and corn, has been found to control branch angle in eudicots. Manipulating TAC1 in field crops like cotton offers the potential for improving crop productivity. Methods: Using a homolog-based methodology, we examined the distribution of TAC1-related genes in cotton compared to other angiosperms. Furthermore, tissue-specific qPCR analysis unveiled distinct expression patterns of TAC1 genes in various cotton tissues. To silence highly expressed specific TAC1 homeologs in the stem, we applied CRISPR-Cas9 gene editing and Agrobacterium-mediated transformation, followed by genotyping and subsequent phenotypic validation of the mutants. Results: Gene duplication events of TAC1 specific to the Gossypium lineage were identified, with 3 copies in diploid progenitors and 6 copies in allotetraploid cottons. Sequence analysis of the TAC1 homeologs in Gossypium hirsutum revealed divergence from other angiosperms with 1-2 copies, suggesting possible neo- or sub-functionalization for the duplicated copies. These TAC1 homeologs exhibited distinct gene expression patterns in various tissues over developmental time, with elevated expression of A11G109300 and D11G112200, specifically in flowers and stems, respectively. CRISPR-mediated loss of these TAC1 homeologous genes resulted in a reduction in branch angle and altered petiole angles, and a 5 to 10-fold reduction in TAC1 expression in the mutants, confirming their role in controlling branch and petiole angles. This research provides a promising strategy for genetically engineering branch and petiole angles in commercial cotton varieties, potentially leading to increased productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA