Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 298(9): 102369, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970389

RESUMO

The transcriptional regulator Taf14 is a component of multiple protein complexes involved in transcription initiation and chromatin remodeling in yeast cells. Although Taf14 is not required for cell viability, it becomes essential in conditions where the formation of the transcription preinitiation complex is hampered. The specific role of Taf14 in mediating transcription initiation and preinitiation complex formation is unclear. Here, we explored its role in the general transcription factor IID by mapping Taf14 genetic and proteomic interactions and found that it was needed for the function of the complex if Htz1, the yeast homolog of histone H2A.Z, was absent from chromatin. Dissecting the functional domains of Taf14 revealed that the linker region between the YEATS and ET domains was required for cell viability in the absence of Htz1 protein. We further show that the linker region of Taf14 interacts with DNA. We propose that providing additional DNA binding capacity might be a general role of Taf14 in the recruitment of protein complexes to DNA and chromatin.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Fator de Transcrição TFIID , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Proteômica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo
2.
Plant Biotechnol J ; 19(12): 2517-2531, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343399

RESUMO

Leaf angle is one of the key factors that determines rice plant architecture. However, the improvement of leaf angle erectness is often accompanied by unfavourable changes in other traits, especially grain size reduction. In this study, we identified the pow1 (put on weight 1) mutant that leads to increased grain size and leaf angle, typical brassinosteroid (BR)-related phenotypes caused by excessive cell proliferation and cell expansion. We show that modulation of the BR biosynthesis genes OsDWARF4 (D4) and D11 and the BR signalling gene D61 could rescue the phenotype of leaf angle but not grain size in the pow1 mutant. We further demonstrated that POW1 functions in grain size regulation by repressing the transactivation activity of the interacting protein TAF2, a highly conserved member of the TFIID transcription initiation complex. Down-regulation of TAF2 rescued the enlarged grain size of pow1 but had little effect on the increased leaf angle phenotype of the mutant. The separable functions of the POW1-TAF2 and POW1-BR modules in grain size and leaf angle control provide a promising strategy for designing varieties with compact plant architecture and increased grain size, thus promoting high-yield breeding in rice.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Melhoramento Vegetal , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Biol Chem ; 291(43): 22721-22740, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27587401

RESUMO

The evolutionarily conserved RNA polymerase II transcription factor D (TFIID) complex is composed of TATA box-binding protein (TBP) and 13 TBP-associated factors (Tafs). The mechanisms by which many Taf subunits contribute to the essential function of TFIID are only poorly understood. To address this gap in knowledge, we present the results of a molecular genetic dissection of the TFIID subunit Taf2. Through systematic site-directed mutagenesis, we have discovered 12 taf2 temperature-sensitive (ts) alleles. Two of these alleles display growth defects that can be strongly suppressed by overexpression of the yeast-specific TFIID subunit TAF14 but not by overexpression of any other TFIID subunit. In Saccharomyces cerevisiae, Taf14 is also a constituent of six other transcription-related complexes, making interpretation of its role in each of these complexes difficult. Although Taf14 is not conserved as a TFIID subunit in metazoans, it is conserved through its chromatin-binding YEATS domain. Based on the Taf2-Taf14 genetic interaction, we demonstrate that Taf2 and Taf14 directly interact and mapped the Taf2-Taf14 interaction domains. We used this information to identify a Taf2 separation-of-function variant (Taf2-ΔC). Although Taf2-ΔC no longer interacts with Taf14 in vivo or in vitro, it stably incorporates into the TFIID complex. In addition, purified Taf2-ΔC mutant TFIID is devoid of Taf14, making this variant a powerful reagent for determining the role of Taf14 in TFIID function. Furthermore, we characterized the mechanism through which Taf14 suppresses taf2ts alleles, shedding light on how Taf2-Taf14 interaction contributes to TFIID complex organization and identifying a potential role for Taf14 in mediating TFIID-chromatin interactions.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Complexos Multiproteicos/genética , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194961, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482120

RESUMO

Taf14 is a subunit of multiple fundamental complexes implicated in transcriptional regulation and DNA damage repair in yeast cells. Here, we investigate the association of Taf14 with the consensus sequence present in other subunits of these complexes and describe the mechanistic features that affect this association. We demonstrate that the precise molecular mechanisms and biological outcomes underlying the Taf14 interactions depend on the accessibility of binding interfaces, the ability to recognize other ligands, and a degree of sensitivity to temperature and chemical and osmotic stresses. Our findings aid in a better understanding of how the distribution of Taf14 among the complexes is mediated.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica
5.
Eur J Med Genet ; 64(11): 104323, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474177

RESUMO

Transcription factor IID is a multimeric protein complex that is essential for the initiation of transcription by RNA polymerase II. One of its critical components, the TATA-binding protein-associated factor 2, is encoded by the gene TAF2. Pathogenic variants of this gene have been shown to be responsible for the Mental retardation, autosomal recessive 40 syndrome. This syndrome is characterized by severe intellectual disability, postnatal microcephaly, pyramidal signs and thin corpus callosum. Until now, only three families have been reported separately. Here we report four individuals, from two unrelated families, who present with severe intellectual disability and global developmental delay, postnatal microcephaly, feet deformities and thin corpus callosum and who carry homozygous TAF2 missense variants detected by Exome Sequencing. Taken together, our findings and those of previously reported subjects allow us to further delineate the clinical phenotype associated with TAF2 biallelic mutations.


Assuntos
Deficiências do Desenvolvimento/genética , Deformidades Congênitas do Pé/genética , Microcefalia/genética , Fenótipo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Corpo Caloso/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Deformidades Congênitas do Pé/patologia , Humanos , Masculino , Microcefalia/patologia
6.
Front Oncol ; 4: 45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653979

RESUMO

As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adaptive changes in growth and morphology that promote metastasis and chemoresistance. Herein, we outline a hypothesis that TATA-box binding protein associated factors (TAFs), which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regulate differentiation and proliferation states; their expression is typically high in pluripotent cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases or mRNA overexpression in 73% of high-grade serous ovarian cancers (HGSC). At the biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator element, which may lead to the deregulation of the transcriptional output of these tumor cells. TAF4, which is altered in 66% of HGSC, is crucial for the stability of the TFIID complex and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show that TAF4B mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer, since it is downregulated or deleted in 98% of HGSC. We conclude that a greater understanding of mechanisms of transcriptional regulation that execute signals from oncogenic signaling cascades is needed in order to expand our understanding of the etiology and progression of ovarian cancer, and most importantly to identify novel targets for therapeutic intervention.

7.
Pediatr Neurol ; 49(6): 411-416.e1, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084144

RESUMO

BACKGROUND: The combination of microcephaly, pyramidal signs, abnormal corpus callosum, and intellectual disability presents a diagnostic challenge. We describe an autosomal recessive disorder characterized by microcephaly, pyramidal signs, thin corpus callosum, and intellectual disability. METHODS: We previously mapped the locus for this disorder to 8q23.2-q24.12; the candidate region included 22 genes. We performed Sanger sequencing of 10 candidate genes; to ensure other genes in the candidate region do not harbor mutations, we sequenced the exome of one affected individual. RESULTS: We identified two homozygous missense changes, p.Thr186Arg and p.Pro416His in TAF2, which encodes a multisubunit cofactor for TFIID-dependent RNA polymerase II-mediated transcription, in all affected individuals. CONCLUSIONS: We propose that the disorder is caused by the more conserved mutation p.Thr186Arg, with the second sequence change identified, p.Pro416His, possibly further negatively affecting the function of the protein. However, it is unclear which of the two changes, or maybe both, represents the causative mutation. A single missense mutation in TAF2 in a family with microcephaly and intellectual disability was described in a large-scale study reporting on the identification of 50 novel genes. We suggest that a mutation in TAF2 can cause this syndrome.


Assuntos
Corpo Caloso/patologia , Deficiência Intelectual , Microcefalia , Mutação/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Cromossomos Humanos Par 8/genética , Biologia Computacional , Análise Mutacional de DNA , Saúde da Família , Feminino , Histidina/genética , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/complicações , Microcefalia/genética , Microcefalia/patologia , Prolina/genética
8.
G3 (Bethesda) ; 2(4): 449-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22540036

RESUMO

The budding yeast Saccharomyces cerevisiae has many traits that make it useful for studies of quantitative inheritance. Genome-wide association studies and bulk segregant analyses often serve as first steps toward the identification of quantitative trait loci. These approaches benefit from having large numbers of ascospores pooled by mating type without contamination by vegetative cells. To this end, we inserted a gene encoding red fluorescent protein into the MATa locus. Red fluorescent protein expression caused MATa and a/α diploid vegetative cells and MATa ascospores to fluoresce; MATα cells without the gene did not fluoresce. Heterozygous diploids segregated fluorescent and nonfluorescent ascospores 2:2 in tetrads and bulk populations. The two populations of spores were separable by fluorescence-activated cell sorting with little cross contamination or contamination with diploid vegetative cells. This approach, which we call Fluorescent Ascospore Technique for Efficient Recovery of Mating Type (FASTER MT), should be applicable to laboratory, industrial, and undomesticated, strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA