Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JID Innov ; 2(6): 100141, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36262667

RESUMO

The formation of mature vasculature through angiogenesis is essential for adequate wound healing, such that blood-borne cells, nutrients, and oxygen can be delivered to the remodeling skin area. Neovessel maturation is highly dependent on the coordinated functions of vascular endothelial cells and perivascular cells, namely pericytes (PCs). However, the underlying mechanism for vascular maturation has not been completely elucidated, and its role in wound healing remains unclear. In this study, we investigated the role of Ninjurin-1 (Ninj1), a new molecule mediating vascular maturation, in wound healing using an inducible PC-specific Ninj1 deletion mouse model. Ninj1 expression increased temporarily in NG2-positive PCs in response to skin injury. When tamoxifen treatment induced a decreased Ninj1 expression in PCs, the neovessels in the regenerating wound margins were structurally and functionally immature, but the total number of microvessels was unaltered. This phenotypic change is associated with a reduction in PC-associated microvessels. Wound healing was significantly delayed in the NG2-specific Ninj1 deletion mouse model. Finally, we showed that Ninj1 is a crucial molecule that mediates vascular maturation in injured skin tissue through the interaction of vascular endothelial cells and PCs, thereby inducing adequate and prompt wound healing.

2.
JHEP Rep ; 3(4): 100315, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345813

RESUMO

BACKGROUND & AIMS: Liver lobules are typically subdivided into 3 metabolic zones: zones 1, 2, and 3. However, the contribution of zonal differences in hepatocytes to liver regeneration, as well as to carcinogenic susceptibility, remains unclear. METHODS: We developed a new method for sustained genetic labelling of zone 3 hepatocytes and performed fate tracing to monitor these cells in multiple mouse liver tumour models. RESULTS: We first examined changes in the zonal distribution of the Wnt target gene Axin2 over time using Axin2-Cre ERT2 ;Rosa26-Lox-Stop-Lox-tdTomato mice (Axin2;tdTomato). We found that following tamoxifen administration at 3 weeks of age, approximately one-third of total hepatocytes that correspond to zone 3 were labelled in Axin2;tdTomato mice; the tdTomato+ cell distribution closely matched that of the zone 3 marker CYP2E1. Cell fate analysis revealed that zone 3 hepatocytes maintained their own lineage but rarely proliferated beyond their liver zonation during homoeostasis; this indicated that our protocol enabled persistent genetic labelling of zone 3 hepatocytes. Using this system, we found that zone 3 hepatocytes generally had high neoplastic potential, which was promoted by constitutive activation of Wnt/ß-catenin signalling in the pericentral area. However, the frequency of zone 3 hepatocyte-derived tumours varied depending on the regeneration pattern of the liver parenchyma in response to liver injury. Notably, Axin2-expressing hepatocytes undergoing chronic liver injury significantly contributed to liver regeneration and possessed high neoplastic potential. Additionally, we revealed that the metabolic phenotypes of liver tumours were acquired during tumorigenesis, irrespective of their spatial origin. CONCLUSIONS: Hepatocytes receiving Wnt/ß-catenin signalling from their microenvironment have high neoplastic potential, and Wnt/ß-catenin signalling is a potential drug target for the prevention of hepatocellular carcinoma. LAY SUMMARY: Lineage tracing revealed that zone 3 hepatocytes residing in the pericentral niche have high neoplastic potential. Under chronic liver injury, hepatocytes receiving Wnt/ß-catenin signalling broadly exist across all hepatic zones and significantly contribute to liver tumorigenesis as well as liver regeneration. Wnt/ß-catenin signalling is a potential drug target for the prevention of hepatocellular carcinoma.

3.
Saudi J Biol Sci ; 28(9): 5214-5220, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466099

RESUMO

Erythropoietin (EPO) is widely used to treat anemia in patients undergoing chemotherapy for cancers. The main objective of this study was to investigate the effect of rHuEPO on the response of spheroid breast cancer, MCF-7, cells to tamoxifen treatment. The MCF-7 spheroids were treated with 10 mg/mL tamoxifen in combination with either 0, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The viability of the MCF-7 cells was determined using the annexin-V, cell cycle, caspases activation and acridine orange/propidium iodide staining. rHuEPO-tamoxifen combination significantly (p greater than 0.05) increased the number of spheroid MCF-7 cells entering early apoptotic phase after 12 h and late apoptotic phase after 24 h of treatment; primarily the result of the antiproliferative effect tamoxifen. Tamoxifen alone significantly (p < 0.05) increased the caspase-3 and -9 activities in the spheroid MCF-7 cells by 200 to 550% of the control. Combination rHuEPO and tamoxifen produced much lesser effect on the caspase-8 activity. The rHuEPO in the combination treatment had concentration-dependently caused decrease in the caspase activities. rHuEPO-tamoxifen combination markedly increased MCF-7 cells entering the SubG0/G1 phase of the cell cycle by more than 500% of the control, while decreasing those entering the G2 + M and S phases by 50%. After 72 h, the combination treatment produced greater (p < 0.05) change in the SubG0/G1 phase than tamoxifen treatment alone. Morphologically, spheroid MCF-7 cells subjected to combination rHuEPO-tamoxifen treatment showed nuclear condensation and margination, cytoplasmic blebbing, necrosis, and early and late apoptosis. Thus, the study showed that rHuEPO-tamoxifen combination induced apoptosis in the spheroid MCF-7 cells. The apoptotic effect of the rHuEPO-tamoxifen combination treatment on the MCF-7 cells was greater than that produced by tamoxifen alone. The rHuEPO-tamoxifen treatment enhanced the caspase-independent apoptotic effects of tamoxifen on the spheroid MCF-7 cells.

4.
JACC Basic Transl Sci ; 4(1): 41-53, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847418

RESUMO

The role of the transforming growth factor (TGF)-ß pathway in myocardial fibrosis is well recognized. However, the precise role of this signaling axis in cardiomyocyte (CM) biology is not defined. In TGF-ß signaling, SMAD4 acts as the central intracellular mediator. To investigate the role of TGF-ß signaling in CM biology, the authors deleted SMAD4 in adult mouse CMs. We demonstrate that CM-SMAD4-dependent TGF-ß signaling is critical for maintaining cardiac function, sarcomere kinetics, ion-channel gene expression, and cardiomyocyte survival. Thus, our findings raise a significant concern regarding the therapeutic approaches that rely on systemic inhibition of the TGF-ß pathway for the management of myocardial fibrosis.

5.
Toxicol Rep ; 6: 1114-1126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788433

RESUMO

Tamoxifen (TAM) is a nonsteroidal antiestrogen drug, used in the prevention and treatment of all stages of hormone-responsive breast cancer. Simvastatin (SIM), a lipid-lowering agent, has been shown to inhibit cancer cell growth. The study aimed at investigating the impact of using SIM with TAM in estrogen receptor-positive (ER+) breast cancer cell line, T47D, as well as in mice-bearing Ehrlich solid tumor. The cell line was treated with different concentrations of TAM or/and SIM for 72 h. The effects of treatment on cytotoxicity, oxidative stress markers, apoptosis, angiogenesis, and metastasis were investigated. Our results showed that the combination treatment decreased the oxidative stress markers, glucose uptake, VEGF, and MMP 2 &9 in the cell line compared to TAM- treated cells. Drug interaction of TAM and SIM was synergistic in T47D by increasing the apoptotic makers Bax/BCL-2 ratio and caspase 3 activity. Additionally, in vivo, the combination regimen resulted in a non-significant decrease in the tumor volume compared to TAM treated group. Moreover, the combined treatment decreased the protein expression of TNF-α, NF-kB compared to control. In conclusion, our results suggest that SIM may serve as a promising treatment with TAM for improving the efficacy against estrogen receptor-positive (ER+) breast cancer.

6.
Cell Mol Gastroenterol Hepatol ; 3(2): 231-244, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275690

RESUMO

BACKGROUND & AIMS: Intestinal adaptation is a compensatory response to the massive loss of small intestine after surgical resection. We investigated the role of intestinal epithelial cell-specific mammalian target of rapamycin complex 1 (i-mTORC1) in intestinal adaptation after massive small bowel resection (SBR). METHODS: We performed 50% proximal SBR on mice to study adaptation. To manipulate i-mTORC1 activity, Villin-CreER transgenic mice were crossed with tuberous sclerosis complex (TSC)1flox/flox or Raptorflox/flox mice to inducibly activate or inactivate i-mTORC1 activity with tamoxifen. Western blot was used to confirm the activity of mTORC1. Crypt depth and villus height were measured to score adaptation. Immunohistochemistry was used to investigate differentiation and rates of crypt proliferation. RESULTS: After SBR, mice treated with systemic rapamycin showed diminished structural adaptation, blunted crypt cell proliferation, and significant body weight loss. Activating i-mTORC1 via TSC1 deletion induced larger hyperproliferative crypts and disorganized Paneth cells without a significant change in villus height. After SBR, ablating TSC1 in intestinal epithelium induced a robust villus growth with much stronger crypt cell proliferation, but similar body weight recovery. Acute inactivation of i-mTORC1 through deletion of Raptor did not change crypt cell proliferation or mucosa structure, but significantly reduced lysozyme/matrix metalloproteinase-7-positive Paneth cell and goblet cell numbers, with increased enteroendocrine cells. Surprisingly, ablation of intestinal epithelial cell-specific Raptor after SBR did not affect adaptation or crypt proliferation, but dramatically reduced body weight recovery after surgery. CONCLUSIONS: Systemic, but not intestinal-specific, mTORC1 is important for normal adaptation responses to SBR. Although not required, forced enterocyte mTORC1 signaling after resection causes an enhanced adaptive response.

7.
FEBS Open Bio ; 5: 8-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685660

RESUMO

Glioblastoma multiforme (GBM) is the most malignant form of brain tumor and is associated with resistance to conventional therapy and poor patient survival. Prostate apoptosis response (Par)-4, a tumor suppressor, is expressed as both an intracellular and secretory/extracellular protein. Though secretory Par-4 induces apoptosis in cancer cells, its potential in drug-resistant tumors remains to be fully explored. Multicellular spheroids (MCS) of cancer cells often acquire multi-drug resistance and serve as ideal experimental models. We investigated the role of Par-4 in Tamoxifen (TAM)-induced cell death in MCS of human cell lines and primary cultures of GBM tumors. TCGA and REMBRANT data analysis revealed that low levels of Par-4 correlated with low survival period (21.85 ± 19.30 days) in GBM but not in astrocytomas (59.13 ± 47.26 days) and oligodendrogliomas (58.04 ± 59.80 days) suggesting low PAWR expression as a predictive risk factor in GBM. Consistently, MCS of human cell lines and primary cultures displayed low Par-4 expression, high level of chemo-resistance genes and were resistant to TAM-induced cytotoxicity. In monolayer cells, TAM-induced cytotoxicity was associated with enhanced expression of Par-4 and was alleviated by silencing of Par-4 using specific siRNA. TAM effectively induced secretory Par-4 in conditioned medium (CM) of cells cultured as monolayer but not in MCS. Moreover, MCS were rendered sensitive to TAM-induced cell death by exposure to conditioned medium (CM)-containing Par-4 (derived from TAM-treated monolayer cells). Also TAM reduced the expression of Akt and PKCζ in GBM cells cultured as monolayer but not in MCS. Importantly, combination of TAM with inhibitors to PI3K inhibitor (LY294002) or PKCζ resulted in secretion of Par-4 and cell death in MCS. Since membrane GRP78 is overexpressed in most cancer cells but not normal cells, and secretory Par-4 induces apoptosis by binding to membrane GRP78, secretory Par-4 is an attractive candidate for potentially overcoming therapy-resistance not only in malignant glioma but in broad spectrum of cancers.

8.
Cell Cycle ; 14(4): 566-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25590437

RESUMO

The apical damage kinase, ATR, is activated by replication stress (RS) both in response to DNA damage and during normal S-phase. Loss of function studies indicates that ATR acts to stabilize replication forks, block cell cycle progression and promote replication restart. Although checkpoint failure and replication fork collapse can result in cell death, no direct cytotoxic pathway downstream of ATR has previously been described. Here, we show that ATR directly reduces survival by inducing phosphorylation of the p50 (NF-κB1, p105) subunit of NF-кB and moreover, that this response is necessary for genome maintenance independent of checkpoint activity. Cell free and in vivo studies demonstrate that RS induces phosphorylation of p50 in an ATR-dependent but DNA damage-independent manner that acts to modulate NF-кB activity without affecting p50/p65 nuclear translocation. This response, evident in human and murine cells, occurs not only in response to exogenous RS but also during the unperturbed S-phase. Functionally, the p50 response results in inhibition of anti-apoptotic gene expression that acts to sensitize cells to DNA strand breaks independent of damage repair. Ultimately, loss of this pathway causes genomic instability due to the accumulation of chromosomal breaks. Together, the data indicate that during S-phase ATR acts via p50 to ensure that cells with elevated levels of replication-associated DNA damage are eliminated.


Assuntos
Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Subunidade p50 de NF-kappa B/metabolismo , Fase S/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ensaio Cometa , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Instabilidade Genômica/genética , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Fosforilação , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA