Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brain Behav Immun Health ; 38: 100780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706571

RESUMO

Alzheimer's disease is classified as a progressive disorder resulting from protein misfolding, also known as proteinopathies. Proteinopathies include synucleinopathies triggered by misfolded amyloid α-synuclein, tauopathies triggered by misfolded tau, and amyloidopathies triggered by misfolded amyloid of which Alzheimer's disease (ß-amyloid) is most prevalent. Most neurodegenerative diseases (>90%) are not due to dominantly inherited genetic causes. Instead, it is thought that the risk for disease is a complicated interaction between inherited and environmental risk factors that, with age, drive pathology that ultimately results in neurodegeneration and disease onset. Since it is increasingly appreciated that encephalitic viral infections can have profoundly detrimental neurological consequences long after the acute infection has resolved, we tested the hypothesis that viral encephalitis exacerbates the pathological profile of protein-misfolding diseases. Using a robust, reproducible, and well-characterized mouse model for ß-amyloidosis, Tg2576, we studied the contribution of alphavirus-induced encephalitis (TC-83 strain of VEEV to model alphavirus encephalitis viruses) on the progression of neurodegenerative pathology. We longitudinally evaluated neurological, neurobehavioral, and cognitive levels, followed by a post-mortem analysis of brain pathology focusing on neuroinflammation. We found more severe cognitive deficits and brain pathology in Tg2576 mice inoculated with TC-83 than in their mock controls. These data set the groundwork to investigate sporadic Alzheimer's disease and treatment interventions for this infectious disease risk factor.

2.
Pathogens ; 13(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38787249

RESUMO

Neurodegenerative diseases are chronic conditions affecting the central nervous system (CNS). Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid beta in the limbic and cortical brain regions. AD is presumed to result from genetic abnormalities or environmental factors, including viral infections, which may have deleterious, long-term effects. In this study, we demonstrate that the Venezuelan equine encephalitis virus (VEEV) commonly induces neurodegeneration and long-term neurological or cognitive sequelae. Notably, the effects of VEEV infection can persistently influence gene expression in the mouse brain, suggesting a potential link between the observed neurodegenerative outcomes and long-term alterations in gene expression. Additionally, we show that alphavirus encephalitis exacerbates the neuropathological profile of AD through crosstalk between inflammatory and kynurenine pathways, generating a range of metabolites with potent effects. Using a mouse model for ß-amyloidosis, Tg2576 mice, we found that cognitive deficits and brain pathology were more severe in Tg2576 mice infected with VEEV TC-83 compared to mock-infected controls. Thus, during immune activation, the kynurenine pathway plays a more active role in the VEEV TC-83-infected cells, leading to increases in the abundance of transcripts related to the kynurenine pathway of tryptophan metabolism. This pathway generates several metabolites with potent effects on neurotransmitter systems as well as on inflammation, as observed in VEEV TC-83-infected animals.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35262074

RESUMO

Background: Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas. There are no approved vaccines or antivirals. TC-83 and V3526 are the best-characterized vaccine candidates for VEEV. Both are live-attenuated vaccines and have been associated with safety concerns, albeit less so for V3526. A previous attempt to improve the TC-83 vaccine focused on further attenuating the vaccine by adding mutations that altered the error incorporation rate of the RNA-dependent RNA polymerase (RdRp). Methods: The research presented here examines the impact of these RdRp mutations in V3526 by cloning the 3X and 4X strains, assessing vaccine efficacy against challenge in adult female CD-1 mice, examining neutralizing antibody titers, investigating vaccine tissue tropism, and testing the stability of the mutant strains. Results: Our results show that the V3526 RdRp mutants exhibited reduced tissue tropism in the spleen and kidney compared to wild-type V3526, while maintaining vaccine efficacy. Illumina sequencing showed that the RdRp mutations could revert to wild-type V3526. Conclusions: The observed genotypic reversion is likely of limited concern because wild-type V3526 is still an effective vaccine capable of providing protection. Our results indicate that the V3526 RdRp mutants may be a safer vaccine design than the original V3526.

4.
Front Trop Dis ; 32022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37854093

RESUMO

Effective and simple delivery of DNA vaccines remains a key to successful clinical applications. Previously, we developed a novel class of DNA vaccines, sometimes called iDNA, which encodes the whole live-attenuated vaccine viruses. Compared to a standard DNA vaccine, an iDNA vaccine required a low dose to launch a live-attenuated vaccine in vitro or in vivo. The goal of this pilot study was to investigate if iDNA vaccine encoding live-attenuated Venezuelan equine encephalitis virus (VEEV) can be efficiently delivered in vivo by a microneedle device using a single-dose vaccination with naked iDNA plasmid. For this purpose, we used pMG4020 plasmid encoding live-attenuated V4020 vaccine of VEE virus. The V4020 virus contains structural gene rearrangement, as well as attenuating mutations genetically engineered to prevent reversion mutations. The pMG4020 was administered to experimental rabbits by using a hollow microstructured transdermal system (hMTS) microneedle device. No adverse events to vaccination were noted. Animals that received pMG4020 plasmid have successfully seroconverted, with high plaque reduction neutralization test (PRNT) antibody titers, similar to those observed in animals that received V4020 virus in place of the pMG4020 iDNA plasmid. We conclude that naked iDNA vaccine can be successfully delivered in vivo by using a single-dose vaccination with a microneedle device.

5.
Vaccine ; 38(17): 3378-3386, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32085953

RESUMO

Live-attenuated V4020 vaccine for Venezuelan equine encephalitis virus (VEEV) containing attenuating rearrangement of the virus structural genes was evaluated in a non-human primate model for immunogenicity and protective efficacy against aerosol challenge with wild-type VEEV. The genomic RNA of V4020 vaccine virus was encoded in the pMG4020 plasmid under control of the CMV promoter and contained the capsid gene downstream from the glycoprotein genes. It also included attenuating mutations from the VEE TC83 vaccine, with E2-120Arg substitution genetically engineered to prevent reversion mutations. The population of V4020 vaccine virus derived from pMG4020-transfected Vero cells was characterized by next generation sequencing (NGS) and indicated no detectable genetic reversions. Cynomolgus macaques were vaccinated with V4020 vaccine virus. After one or two vaccinations including by intramuscular route, high levels of virus-neutralizing antibodies were confirmed with no viremia or apparent adverse reactions to vaccinations. The protective effect of vaccination was evaluated using an aerosol challenge with VEEV. After challenge, macaques had no detectable viremia, demonstrating a protective effect of vaccination with live V4020 VEEV vaccine.


Assuntos
Encefalomielite Equina Venezuelana , Vacinas Virais/imunologia , Aerossóis , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Vírus da Encefalite Equina Venezuelana/genética , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Macaca , Células Vero , Vacinas Virais/genética , Viremia/prevenção & controle
6.
J Virol Methods ; 277: 113792, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31786314

RESUMO

The challenges associated with operating electron microscopes (EM) in biosafety level 3 and 4 containment facilities have slowed progress of cryo-EM studies of high consequence viruses. We address this gap in a case study of Venezuelan Equine Encephalitis Virus (VEEV) strain TC-83. Chemical inactivation of viruses may physically distort structure, and hence to verify retention of native structure, we selected VEEV strain TC-83 to develop this methodology as this virus has a 4.8 Šresolution cryo-EM structure. In our method, amplified VEEV TC-83 was concentrated directly from supernatant through a 30 % sucrose cushion, resuspended, and chemically inactivated with 1 % glutaraldehyde. A second 30 % sucrose cushion removed any excess glutaraldehyde that might interfere with single particle analyses. A cryo-EM map of fixed, inactivated VEEV was determined to a resolution of 7.9 Å. The map retained structural features of the native virus such as the icosahedral symmetry, and the organization of the capsid core and the trimeric spikes. Our results suggest that our strategy can easily be adapted for inactivation of other enveloped, RNA viruses requiring BSL-3 or BSL-4 for cryo-EM. However, the validation of inactivation requires the oversight of Biosafety Committee for each Institution.


Assuntos
Microscopia Crioeletrônica/métodos , Vírus da Encefalite Equina Venezuelana/fisiologia , Vírus de RNA/fisiologia , Inativação de Vírus , Animais , Capsídeo/química , Proteínas do Capsídeo , Linhagem Celular , Chlorocebus aethiops , Contenção de Riscos Biológicos/métodos , Vírus da Encefalite Equina Venezuelana/genética , Glutaral/química , Glutaral/metabolismo , Cavalos , Células Vero , Virologia/métodos , Replicação Viral
7.
Vaccine ; 37(25): 3317-3325, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31072736

RESUMO

Novel live-attenuated V4020 vaccine was prepared for Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The genome of V4020 virus was rearranged, with the capsid gene expressed using a duplicate subgenomic promoter downstream from the glycoprotein genes. V4020 also included both attenuating mutations from the TC83 VEEV vaccine secured by mutagenesis to prevent reversion mutations. The full-length infectious RNA of V4020 vaccine virus was expressed from pMG4020 plasmid downstream from the CMV promoter and launched replication of live-attenuated V4020 in vitro or in vivo. BALB/c mice vaccinated with a single dose of V4020 virus or with pMG4020 plasmid had no adverse reactions to vaccinations and developed high titers of neutralizing antibodies. After challenge with the wild type VEEV, vaccinated mice survived with no morbidity, while all unvaccinated controls succumbed to lethal infection. Intracranial injections in mice showed attenuated replication of V4020 vaccine virus as compared to the TC83. We conclude that V4020 vaccine has safety advantage over TC83, while provides equivalent protection in a mouse VEEV challenge model.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/prevenção & controle , Genoma Viral , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , DNA Viral/genética , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/imunologia , Cavalos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Plasmídeos/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Replicação Viral
8.
Viruses ; 11(11)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766138

RESUMO

Traditional pathogenesis studies of alphaviruses involves monitoring survival, viremia, and pathogen dissemination via serial necropsies; however, molecular imaging shifts this paradigm and provides a dynamic assessment of pathogen infection. Positron emission tomography (PET) with PET tracers targeted to study neuroinflammation (N,N-diethyl-2-[4-phenyl]-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide, [18F]DPA-714), apoptosis (caspase-3 substrate, [18F]CP-18), hypoxia (fluormisonidazole, [18F]FMISO), blood-brain barrier (BBB) integrity ([18F]albumin), and metabolism (fluorodeoxyglucose, [18F]FDG) was performed on C3H/HeN mice infected intranasally with 7000 plaque-forming units (PFU) of Venezuelan equine encephalitis virus (VEEV) TC-83. The main findings are as follows: (1) whole-brain [18F]DPA-714 and [18F]CP-18 uptake increased three-fold demonstrating, neuroinflammation and apoptosis, respectively; (2) [18F]albumin uptake increased by 25% across the brain demonstrating an altered BBB; (3) [18F]FMISO uptake increased by 50% across the whole brain indicating hypoxic regions; (4) whole-brain [18F]FDG uptake was unaffected; (5) [18F]DPA-714 uptake in (a) cortex, thalamus, striatum, hypothalamus, and hippocampus increased through day seven and decreased by day 10 post exposure, (b) olfactory bulb increased at day three, peaked day seven, and decreased day 10, and (c) brain stem and cerebellum increased through day 10. In conclusion, intranasal exposure of C3H/HeN mice to VEEV TC-83 results in both time-dependent and regional increases in brain inflammation, apoptosis, and hypoxia, as well as modest decreases in BBB integrity; however, it has no effect on brain glucose metabolism.


Assuntos
Apoptose , Barreira Hematoencefálica/metabolismo , Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana/diagnóstico , Encefalomielite Equina Venezuelana/metabolismo , Hipóxia/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Biomarcadores , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/fisiologia , Encefalomielite Equina Venezuelana/virologia , Cavalos , Processamento de Imagem Assistida por Computador , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo
9.
Front Microbiol ; 8: 188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223982

RESUMO

Long-term neurological complications, termed sequelae, can result from viral encephalitis, which are not well understood. In human survivors, alphavirus encephalitis can cause severe neurobehavioral changes, in the most extreme cases, a schizophrenic-like syndrome. In the present study, we aimed to adapt an animal model of alphavirus infection survival to study the development of these long-term neurological complications. Upon low-dose infection of wild-type C57B/6 mice, asymptomatic and symptomatic groups were established and compared to mock-infected mice to measure general health and baseline neurological function, including the acoustic startle response and prepulse inhibition paradigm. Prepulse inhibition is a robust operational measure of sensorimotor gating, a fundamental form of information processing. Deficits in prepulse inhibition manifest as the inability to filter out extraneous sensory stimuli. Sensory gating is disrupted in schizophrenia and other mental disorders, as well as neurodegenerative diseases. Symptomatic mice developed deficits in prepulse inhibition that lasted through 6 months post infection; these deficits were absent in asymptomatic or mock-infected groups. Accompanying prepulse inhibition deficits, symptomatic animals exhibited thalamus damage as visualized with H&E staining, as well as increased GFAP expression in the posterior complex of the thalamus and dentate gyrus of the hippocampus. These histological changes and increased GFAP expression were absent in the asymptomatic and mock-infected animals, indicating that glial scarring could have contributed to the prepulse inhibition phenotype observed in the symptomatic animals. This model provides a tool to test mechanisms of and treatments for the neurological sequelae of viral encephalitis and begins to delineate potential explanations for the development of such sequelae post infection.

10.
Front Microbiol ; 8: 81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184218

RESUMO

Intranasal infection with vaccine strain of Venezuelan equine encephalitis virus (TC83) caused persistent viral infection in the brains of mice without functional αß T-cells (αß-TCR -/-). Remarkably, viral kinetics, host response gene transcripts and symptomatic disease are similar between αß-TCR -/- and wild-type C57BL/6 (WT) mice during acute phase of infection [0-13 days post-infection (dpi)]. While WT mice clear infectious virus in the brain by 13 dpi, αß-TCR -/- maintain infectious virus in the brain to 92 dpi. Persistent brain infection in αß-TCR -/- correlated with inflammatory infiltrates and elevated cytokine protein levels in the brain at later time points. Persistent brain infection of αß-TCR -/- mice provides a novel model to study prolonged alphaviral infection as well as the effects and biomarkers of long-term viral inflammation in the brain.

11.
Vaccine ; 33(41): 5386-5395, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26319744

RESUMO

The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1(*)1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8 T cells (19.6 ± 7.4%) produced IFNγ in response to the immunodominant peptide PSA(65-73). In the blood of vaccinated mice, 18.4 ± 4.1% of CD8 T cells were PSA-specific as determined by the staining with H-2D(b)/PSA(65-73) dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8+ T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer.


Assuntos
Vacinas Anticâncer/imunologia , Expressão Gênica , Antígenos HLA-DR/genética , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Alphavirus/genética , Alphavirus/imunologia , Animais , Vacinas Anticâncer/genética , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Ordem dos Genes , Vetores Genéticos/genética , Antígenos HLA-DR/imunologia , Humanos , Imunidade , Imunização , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Carga Tumoral/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética
12.
J Vaccines Vaccin ; 3(7)2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23420494

RESUMO

Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA