Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Saudi Pharm J ; 28(8): 951-962, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32792840

RESUMO

In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.

2.
Br J Nutr ; 118(11): 959-970, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29173237

RESUMO

n-3 PUFA are lipids that play crucial roles in immune-regulation, cardio-protection and neurodevelopment. However, little is known about the role that these essential dietary fats play in modulating caecal microbiota composition and the subsequent production of functional metabolites. To investigate this, female C57BL/6 mice were assigned to one of three diets (control (CON), n-3 supplemented (n3+) or n-3 deficient (n3-)) during gestation, following which their male offspring were continued on the same diets for 12 weeks. Caecal content of mothers and offspring were collected for 16S sequencing and metabolic phenotyping. n3- male offspring displayed significantly less % fat mass than n3+ and CON. n-3 Status also induced a number of changes to gut microbiota composition such that n3- offspring had greater abundance of Tenericutes, Anaeroplasma and Coriobacteriaceae. Metabolomics analysis revealed an increase in caecal metabolites involved in energy metabolism in n3+ including α-ketoglutaric acid, malic acid and fumaric acid. n3- animals displayed significantly reduced acetate, butyrate and total caecal SCFA production. These results demonstrate that dietary n-3 PUFA regulate gut microbiota homoeostasis whereby n-3 deficiency may induce a state of disturbance. Further studies are warranted to examine whether these microbial and metabolic disturbances are causally related to changes in metabolic health outcomes.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Ceco/microbiologia , Ácidos Graxos Ômega-3/deficiência , Microbioma Gastrointestinal , Animais , Composição Corporal , DNA Bacteriano/isolamento & purificação , Dieta , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/sangue , Feminino , Fumaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Masculino , Metaboloma , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA
3.
Br J Nutr ; 118(9): 641-650, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29185933

RESUMO

Suboptimal vitamin B2 status is encountered globally. Riboflavin deficiency depresses growth and results in a fatty liver. The underlying mechanisms remain to be established and an overview of molecular alterations is lacking. We investigated hepatic proteome changes induced by riboflavin deficiency to explain its effects on growth and hepatic lipid metabolism. In all, 360 1-d-old Pekin ducks were divided into three groups of 120 birds each, with twelve replicates and ten birds per replicate. For 21 d, the ducks were fed ad libitum a control diet (CAL), a riboflavin-deficient diet (RD) or were pair-fed with the control diet to the mean daily intake of the RD group (CPF). When comparing RD with CAL and CPF, growth depression, liver enlargement, liver lipid accumulation and enhanced liver SFA (C6 : 0, C12 : 0, C16 : 0, C18 : 0) were observed. In RD, thirty-two proteins were enhanced and thirty-one diminished (>1·5-fold) compared with CAL and CPF. Selected proteins were confirmed by Western blotting. The diminished proteins are mainly involved in fatty acid ß-oxidation and the mitochondrial electron transport chain (ETC), whereas the enhanced proteins are mainly involved in TAG and cholesterol biosynthesis. RD causes liver lipid accumulation and growth depression probably by impairing fatty acid ß-oxidation and ETC. These findings contribute to our understanding of the mechanisms of liver lipid metabolic disorders due to RD.


Assuntos
Patos/sangue , Fígado/metabolismo , Proteoma/genética , Deficiência de Riboflavina/sangue , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Glicemia/metabolismo , Dieta , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo dos Lipídeos , Masculino , Mitocôndrias Hepáticas/metabolismo , Proteoma/metabolismo , Riboflavina/sangue , Albumina Sérica/metabolismo
4.
Saudi J Biol Sci ; 30(3): 103583, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36748033

RESUMO

Plastic pollution is a global issue and has become a major concern since Coronavirus disease (COVID)-19. In developing nations, landfilling and illegal waste disposal are typical ways to dispose of COVID-19-infected material. These technologies worsen plastic pollution and other human and animal health problems. Plastic degrades in light and heat, generating hazardous primary and secondary micro-plastic. Certain bacteria can degrade artificial polymers using genes, enzymes, and metabolic pathways. Microorganisms including bacteria degrade petrochemical plastics slowly. High molecular weight, strong chemical bonds, and excessive hydrophobicity reduce plastic biodegradation. There is not enough study on genes, enzymes, and bacteria-plastic interactions. Synthetic biology, metabolic engineering, and bioinformatics methods have been created to biodegrade synthetic polymers. This review will focus on how microorganisms' degrading capacity can be increased using recent biotechnological techniques.

5.
Comput Struct Biotechnol J ; 21: 1606-1620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874158

RESUMO

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.

6.
JHEP Rep ; 4(8): 100510, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845295

RESUMO

Background & Aims: In cirrhosis, astrocytic swelling is believed to be the principal mechanism of ammonia neurotoxicity leading to hepatic encephalopathy (HE). The role of neuronal dysfunction in HE is not clear. We aimed to explore the impact of hyperammonaemia on mitochondrial function in primary co-cultures of neurons and astrocytes and in acute brain slices of cirrhotic rats using live cell imaging. Methods: To primary cocultures of astrocytes and neurons, low concentrations (1 and 5 µM) of NH4Cl were applied. In rats with bile duct ligation (BDL)-induced cirrhosis, a model known to induce hyperammonaemia and minimal HE, acute brain slices were studied. One group of BDL rats was treated twice daily with the ammonia scavenger ornithine phenylacetate (OP; 0.3 g/kg). Fluorescence measurements of changes in mitochondrial membrane potential (Δψm), cytosolic and mitochondrial reactive oxygen species (ROS) production, lipid peroxidation (LP) rates, and cell viability were performed using confocal microscopy. Results: Neuronal cultures treated with NH4Cl exhibited mitochondrial dysfunction, ROS overproduction, and reduced cell viability (27.8 ± 2.3% and 41.5 ± 3.7%, respectively) compared with untreated cultures (15.7 ± 1.0%, both p <0.0001). BDL led to increased cerebral LP (p = 0.0003) and cytosolic ROS generation (p <0.0001), which was restored by OP (both p <0.0001). Mitochondrial function was severely compromised in BDL, resulting in hyperpolarisation of Δψm with consequent overconsumption of adenosine triphosphate and augmentation of mitochondrial ROS production. Administration of OP restored Δψm. In BDL animals, neuronal loss was observed in hippocampal areas, which was partially prevented by OP. Conclusions: Our results elucidate that low-grade hyperammonaemia in cirrhosis can severely impact on brain mitochondrial function. Profound neuronal injury was observed in hyperammonaemic conditions, which was partially reversible by OP. This points towards a novel mechanism of HE development. Lay summary: The impact of hyperammonaemia, a common finding in patients with liver cirrhosis, on brain mitochondrial function was investigated in this study. The results show that ammonia in concentrations commonly seen in patients induces severe mitochondrial dysfunction, overproduction of damaging oxygen molecules, and profound injury and death of neurons in rat brain cells. These findings point towards a novel mechanism of ammonia-induced brain injury in liver failure and potential novel therapeutic targets.

7.
Comput Struct Biotechnol J ; 20: 3935-3945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35950184

RESUMO

This study aimed to explore whether chronic l-lactate exposure could affect the peripheral tissues of mice and to determine the underlying pathogenesis. Herein, male C57BL/6 mice were divided into control and l-lactate groups. After l-lactate treatment for eight weeks (1 g/kg), metabolic changes in liver, kidney, muscle, and serum samples were determined by 1H nuclear magnetic resonance (1H NMR)-based metabolomics. Additionally, organ function was evaluated by serum biochemical and histopathological examinations. Reactive oxygen species (ROS) levels were measured using dihydroethidium staining; levels of signals involved in lactate metabolism and ROS-related pathways were detected using western blotting or polymerase chain reaction. Apoptosis was detected by TUNEL-fluorescence staining. Metabolomic analysis revealed that l-lactate mice showed decreased levels of glutathione (GSH), taurine, ATP, and increased glucose content, compared to control mice. Furthermore, l-lactate mice presented significantly higher serum levels of alanine aminotransferase and aspartate aminotransferase and increased glycogen content in hepatic tissues, compared to control mice. l-lactate mice also had a greater number of apoptotic nuclei in the livers than controls. Moreover, l-lactate exposure reduced mRNA and protein levels of superoxide dismutase-2 and c-glutamylcysteine ligase, elevated levels of cytochrome P450 2E1 and NADPH oxidase-2, and increased the protein expressions of LDHB, Bax/Bcl-2, cleaved caspase-3, and sirtuin-1 in hepatic tissues. Together, these results indicate that chronic l-lactate exposure increases oxidative stress and apoptosis in hepatocytes via upregulation of Bax/Bcl-2 expression and the consequent mitochondrial cytochrome-C release and caspase-3 activation, which contributes to the pathogenesis of hepatic dysfunction.

8.
Acta Pharm Sin B ; 12(2): 759-773, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256945

RESUMO

Tumor cells have unique metabolic programming that is biologically distinct from that of corresponding normal cells. Resetting tumor metabolic programming is a promising strategy to ameliorate drug resistance and improve the tumor microenvironment. Here, we show that carboxyamidotriazole (CAI), an anticancer drug, can function as a metabolic modulator that decreases glucose and lipid metabolism and increases the dependency of colon cancer cells on glutamine metabolism. CAI suppressed glucose and lipid metabolism utilization, causing inhibition of mitochondrial respiratory chain complex I, thus producing reactive oxygen species (ROS). In parallel, activation of the aryl hydrocarbon receptor (AhR) increased glutamine uptake via the transporter SLC1A5, which could activate the ROS-scavenging enzyme glutathione peroxidase. As a result, combined use of inhibitors of GLS/GDH1, CAI could effectively restrict colorectal cancer (CRC) energy metabolism. These data illuminate a new antitumor mechanism of CAI, suggesting a new strategy for CRC metabolic reprogramming treatment.

9.
Acta Pharm Sin B ; 12(2): 511-531, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256932

RESUMO

Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.

10.
Comput Struct Biotechnol J ; 20: 5790-5812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382179

RESUMO

The relevance of protein-glycan interactions in immunity has long been underestimated. Yet, the immune system possesses numerous classes of glycan-binding proteins, so-called lectins. Of specific interest is the group of myeloid C-type lectin receptors (CLRs) as they are mainly expressed by myeloid cells and play an important role in the initiation of an immune response. Myeloid CLRs represent a major group amongst pattern recognition receptors (PRRs), placing them at the center of the rapidly growing field of glycoimmunology. CLRs have evolved to encompass a wide range of structures and functions and to recognize a large number of glycans and many other ligands from different classes of biopolymers. This review aims at providing the reader with an overview of myeloid CLRs and selected ligands, while highlighting recent insights into CLR-ligand interactions. Subsequently, methodological approaches in CLR-ligand research will be presented. Finally, this review will discuss how CLR-ligand interactions culminate in immunological functions, how glycan mimicry favors immune escape by pathogens, and in which way immune responses can be affected by CLR-ligand interactions in the long term.

11.
Comput Struct Biotechnol J ; 20: 5935-5951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382190

RESUMO

Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.

12.
Biotechnol Rep (Amst) ; 31: e00661, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34386355

RESUMO

Increased polyhydroxybutyrate production in cyanobacterium Synechocystis sp. PCC 6803 lacking adc1 gene (Δadc1) is first-timely reported in this study. We constructed the mutant by disrupting adc1 gene encoding arginine decarboxylase, thereby exhibiting a partial blockade of polyamine synthesis. This Δadc1 mutant had a proliferative growth and certain contents of intracellular pigments including chlorophyll a and carotenoids as similar as those of wild type (WT). Highest PHB production was certainly induced by BG11-N-P+A condition in both WT and Δadc1 mutant of about 24.9 %w/DCW at day 9 and 36.1 %w/DCW at day 7 of adaptation time, respectively. Abundant PHB granules were also visualized under both BG11-N-P and BG11-N-P+A conditions. All pha transcript amounts of Δadc1 mutant grown at 7 days-adaptation time were clearly upregulated corresponding to its PHB content under BG11-N-P+A condition. Our finding indicated that this adc1 perturbation is alternatively achieved for PHB production in Synechocystis sp. PCC 6803.

13.
Mayo Clin Proc Innov Qual Outcomes ; 5(2): 423-430, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997638

RESUMO

OBJECTIVE: To distinguish between sepsis only vs progressive lymphoma in patients with a history of lymphoma who present to the hospital with lactic acidosis. PATIENTS AND METHODS: We identified patients with non-Hodgkin lymphoma (NHL) or Hodgkin lymphoma from January 2014 to December 2015. Patients were categorized into 2 groups: sepsis only or progressive lymphoma. Two-sided Wilcoxon rank sum test and χ1/Fisher exact test were used to compare the continuous and categorical variables, respectively. Kaplan-Meier analysis was used to estimate overall survival (OS). RESULTS: A total of 51 patients were identified; 33 (65%) patients were categorized into the sepsis only group, and 18 (35%), into the progressive lymphoma group. Values for serum lactate dehydrogenase (LDH) drawn during hospitalization were statistically different between the sepsis only and progressive lymphoma groups (median, 262 vs 665 U/L; P=.005), respectively. The sensitivity and specificity of serum LDH level 2 or more times the upper limit of normal for progressive lymphoma were 56% (95% CI, 33% to 79%) and 85% (95% CI, 73% to 97%), respectively. Serum LDH level was independently predictive of inferior OS (hazard ratio, 27.8; 95% CI, 4.0 to 160.1; P<.001), while serum albumin level (hazard ratio, 0.05; 95% CI, 0.01 to 0.27; P<.001) was independently predictive of improved OS. CONCLUSION: Serum LDH levels used in conjunction with serial serum lactate values may be reliable markers to differentiate patients with progressive lymphomatous disease from patients with lymphoma with sepsis only. The LDH levels should be obtained in all patients with lymphoma who present to the hospital with lactic acidosis.

14.
Comput Struct Biotechnol J ; 19: 1956-1965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995897

RESUMO

Principal component analysis (PCA) is a useful tool for omics analysis to identify underlying factors and visualize relationships between biomarkers. However, this approach is limited in addressing life complexity and further improvement is required. This study aimed to develop a new approach that combines mass spectrometry-based metabolomics with multiblock PCA to elucidate the whole-body global metabolic network, thereby generating comparable metabolite maps to clarify the metabolic relationships among several organs. To evaluate the newly developed method, Zucker diabetic fatty (ZDF) rats (n = 6) were used as type 2 diabetic models and Sprague Dawley (SD) rats (n = 6) as controls. Metabolites in the heart, kidney, and liver were analyzed by capillary electrophoresis and liquid chromatography mass spectrometry, respectively, and the detected metabolites were analyzed by multiblock PCA. More than 300 metabolites were detected in the heart, kidney, and liver. When the metabolites obtained from the three organs were analyzed with multiblock PCA, the score and loading maps obtained were highly synchronized and their metabolism patterns were visually comparable. A significant finding in this study was the different expression patterns in lipid metabolism among the three organs; notably triacylglycerols with polyunsaturated fatty acids or less unsaturated fatty acids showed specific accumulation patterns depending on the organs.

15.
Metabol Open ; 10: 100092, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997754

RESUMO

BACKGROUND: Telfairia occidentalis (TO), a plant consumed for its nutritional and medicinal values, exhibits hypoglycaemic effect. However, the metabolic fate of the glucose following TO-induced insulin secretion and consequent hypoglycaemia is not clear. OBJECTIVE: This study determined the effect of ethyl acetate and n-hexane fractions of TO leaf extracts on some biochemical parameters in the glucose metabolic pathway to explain the possible fate of blood glucose following TO-induced hypoglycaemia. METHODS: Eighteen male Wistar rats (180-200 g) divided into control, n-hexane TO fraction- and ethyl acetate TO fraction-treated groups (n = 6/group) were used. The control animals received normal saline while the treated groups received TO at 100 mg/kg for seven days. After 24 h following the last dose, the animals were anaesthetised using ketamine; blood samples were collected and livers harvested to determine some biochemical parameters. RESULTS: Ethyl acetate TO fraction significantly increased plasma insulin, liver glucokinase activity and plasma pyruvate concentration, but significantly decreased plasma glucose and liver glycogen, without significant changes in plasma lactate, glucose-6-phosphate, liver glucose-6-phosphatase and lactate dehydrogenase activities when compared with control. N-hexane TO fraction significantly reduced liver glucose-6-phosphatase activity and glycogen but significantly increased plasma pyruvate, without significant changes in plasma glucose, insulin, glucose-6-phosphate and lactate concentrations; and liver glucokinase and lactate dehydrogenase activities. CONCLUSION: The present study showed that insulin-mediated TO-induced hypoglycaemia resulted in the stimulation of glycolysis and pyruvate production via insulin-dependent and insulin-independent mechanisms.

16.
JACC Basic Transl Sci ; 6(11): 834-850, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34869947

RESUMO

Small molecule inhibition of with no lysine kinase 1 (WNK1) (WNK463) signaling activates adenosine monophosphate-activated protein kinase signaling and mitigates membrane enrichment of glucose transporters 1 and 4, which decreases protein O-GlcNAcylation and glycation. Quantitative proteomics of right ventricular (RV) mitochondrial enrichments shows WNK463 prevents down-regulation of several mitochondrial metabolic enzymes. and metabolomics analysis suggests multiple metabolic processes are corrected. Physiologically, WNK463 augments RV systolic and diastolic function independent of pulmonary arterial hypertension severity. Hypochloremia, a condition of predicted WNK1 activation in patients with pulmonary arterial hypertension, is associated with more severe RV dysfunction. These results suggest WNK1 may be a druggable target to combat metabolic dysregulation and may improve RV function and survival in pulmonary arterial hypertension.

17.
Regen Ther ; 17: 8-12, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33598509

RESUMO

Recent studies have revealed that cancer stem cells (CSCs) undergo metabolic alterations that differentiate them from non-CSCs. Inhibition of specific metabolic pathways in CSCs has been conducted to eliminate the CSC population in many types of cancer. However, there is conflicting evidence about whether CSCs depend on glycolysis or mitochondrial oxidative phosphorylation (OXPHOS) to maintain their stem cell properties. This review summarizes the latest knowledge regarding CSC-specific metabolic alterations and offers recent evidence that the surrounding microenvironments may play an important role in the maintenance of CSC properties.

18.
JHEP Rep ; 3(6): 100346, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34667947

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease worldwide. It is characterised by steatosis, liver inflammation, hepatocellular injury and progressive fibrosis. Several preclinical models (dietary and genetic animal models) of NAFLD have deepened our understanding of its aetiology and pathophysiology. Despite the progress made, there are currently no effective treatments for NAFLD. In this review, we will provide an update on the known molecular pathways involved in the pathophysiology of NAFLD and on ongoing studies of new therapeutic targets.

19.
Acta Pharm Sin B ; 11(11): 3665-3677, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900545

RESUMO

Detailed knowledge on tissue-specific metabolic reprogramming in diabetic nephropathy (DN) is vital for more accurate understanding the molecular pathological signature and developing novel therapeutic strategies. In the present study, a spatial-resolved metabolomics approach based on air flow-assisted desorption electrospray ionization (AFADESI) and matrix-assisted laser desorption ionization (MALDI) integrated mass spectrometry imaging (MSI) was proposed to investigate tissue-specific metabolic alterations in the kidneys of high-fat diet-fed and streptozotocin (STZ)-treated DN rats and the therapeutic effect of astragaloside IV, a potential anti-diabetic drug, against DN. As a result, a wide range of functional metabolites including sugars, amino acids, nucleotides and their derivatives, fatty acids, phospholipids, sphingolipids, glycerides, carnitine and its derivatives, vitamins, peptides, and metal ions associated with DN were identified and their unique distribution patterns in the rat kidney were visualized with high chemical specificity and high spatial resolution. These region-specific metabolic disturbances were ameliorated by repeated oral administration of astragaloside IV (100 mg/kg) for 12 weeks. This study provided more comprehensive and detailed information about the tissue-specific metabolic reprogramming and molecular pathological signature in the kidney of diabetic rats. These findings highlighted the promising potential of AFADESI and MALDI integrated MSI based metabolomics approach for application in metabolic kidney diseases.

20.
J Adv Res ; 34: 93-107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024183

RESUMO

Introduction: Neomenthol, a cyclic monoterpenoid, is a stereoisomer of menthol present in the essential oil of Mentha spp. It is used in food as a flavoring agent, in cosmetics and medicines because of its cooling effects. However, neomenthol has not been much explored for its anticancer potential. Additionally, targeting hyaluronidase, Cathepsin-D, and ODC by phytochemicals is amongst the efficient approach for cancer prevention and/or treatment. Objectives: To investigate the molecular and cell target-based antiproliferative potential of neomenthol on human cancer (A431, PC-3, K562, A549, FaDu, MDA-MB-231, COLO-205, MCF-7, and WRL-68) and normal (HEK-293) cell lines. Methods: The potency of neomenthol was evaluated on human cancer and normal cell line using SRB, NRU and MTT assays. The molecular target based study of neomenthol was carried out in cell-free and cell-based test systems. Further, the potency of neomenthol was confirmed by quantitative real-time PCR analysis and molecular docking studies. The in vivo anticancer potential of neomenthol was performed on mice EAC model and the toxicity examination was accomplished through in silico, ex vivo and in vivo approaches. Results: Neomenthol exhibits a promising activity (IC50 17.3 ± 6.49 µM) against human epidermoid carcinoma (A431) cells by arresting the G2/M phase and increasing the number of sub-diploid cells. It significantly inhibits hyaluronidase activity (IC50 12.81 ± 0.01 µM) and affects the tubulin polymerization. The expression analysis and molecular docking studies support the in vitro molecular and cell target based results. Neomenthol prevents EAC tumor formation by 58.84% and inhibits hyaluronidase activity up to 10% at 75 mg/kg bw, i.p. dose. The oral dose of 1000 mg/kg bw was found safe in acute oral toxicity studies. Conclusion: Neomenthol delayed the growth of skin carcinoma cells by inhibiting the tubulin polymerization and hyaluronidase activity, which are responsible for tumor growth, metastasis, and angiogenesis.


Assuntos
Neoplasias Cutâneas , Tubulina (Proteína) , Animais , Proliferação de Células , Células HEK293 , Humanos , Hialuronoglucosaminidase , Camundongos , Simulação de Acoplamento Molecular , Polimerização , Neoplasias Cutâneas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA