RESUMO
The Tres Cantos Antimalarial Compound Set (TCAMS) is a publicly available compound library which contains 13533 hit structures with confirmed activity against Plasmodium falciparum, the infective agent responsible for malaria tropica. The TCAMS provides a variety of starting points for the investigation of new antiplasmodial drug leads. One of the promising compounds is TCMDC-137332, which seemed to be a good starting point due to its antiplasmodial potency and its predicted physicochemical properties. Several new analogues based on a 2-phenoxyanilide scaffold were synthesized by standard amide coupling reactions and were fully characterized regarding their identity and purity by spectroscopic and chromatographic methods. Furthermore, the results of the biological evaluation of all congeners against Plasmodium falciparum NF54 strains are presented. The findings of our in vitro screening could not confirm the presumed nanomolar antiplasmodial activity of TCMDC-137332 and its derivatives.
Assuntos
Anilidas/síntese química , Antimaláricos/síntese química , Plasmodium falciparum/efeitos dos fármacos , Anilidas/química , Anilidas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
In the past decade there has been a significant reduction in deaths due to malaria, in part due to the success of the gold standard antimalarial treatment - artemisinin combination therapies (ACTs). However the potential threat of ACT failure and the lack of a broadly effective malaria vaccine are driving efforts to discover new chemical entities (NCEs) to target this disease. The primary sulfonamide (PS) moiety is a component of several clinical drugs, including those for treatment of kidney disease, glaucoma and epilepsy, however this chemotype has not yet been exploited for malaria. In this study 31 PS compounds sourced from the GlaxoSmithKline (GSK) Tres Cantos antimalarial set (TCAMS) were investigated for their ability to selectively inhibit the in vitro growth of Plasmodium falciparum asexual stage malaria parasites. Of these, 14 compounds were found to have submicromolar activity (IC50 0.16-0.89 µM) and a modest selectivity index (SI) for the parasite versus human cells (SI > 12 to >43). As the PS moiety is known to inhibit carbonic anhydrase (CA) enzymes from many organisms, the PS compounds were assessed for recombinant P. falciparum CA (PfCA) mediated inhibition of CO2 hydration. The PfCA inhibition activity did not correlate with antiplasmodial potency. Furthermore, no significant difference in IC50 was observed for P. falciparum versus P. knowlesi (P > 0.05), a Plasmodium species that is not known to contain an annotated PfCA gene. Together these data suggest that the asexual intraerythrocytic stage antiplasmodial activity of the PS compounds examined in this study is likely unrelated to PfCA inhibition.
Assuntos
Antimaláricos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sulfonamidas/farmacologia , Antimaláricos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/enzimologia , Plasmodium knowlesi/crescimento & desenvolvimento , Sulfonamidas/química , Sulfonamidas/classificaçãoRESUMO
Antiparasitic oral drugs have been associated to lipophilic molecules due to their intrinsic permeability. However, these kind of molecules are associated to numerous adverse effects, which have been extensively studied. Within the Tres Cantos Antimalarial Set (TCAMS) we have identified two small, soluble and simple hits that even presenting antiplasmodial activities in the range of 0.4-0.5 µM are able to show in vivo activity.
RESUMO
Over the last decades, malaria parasites have been rapidly developing resistance against antimalarial drugs, which underlines the need for novel drug targets. Thioredoxin reductase (TrxR) is crucially involved in redox homeostasis and essential for Plasmodium falciparum. Here, we report the first crystal structure of P. falciparum TrxR bound to its substrate thioredoxin 1. Upon complex formation, the flexible C-terminal arm and an insertion loop of PfTrxR are rearranged, suggesting that the C-terminal arm changes its conformation during catalysis similar to human TrxR. Striking differences between P. falciparum and human TrxR are a Plasmodium-specific insertion and the conformation of the C-terminal arm, which lead to considerable differences in thioredoxin binding and disulfide reduction. Moreover, we functionally analyzed amino acid residues involved in substrate binding and in the architecture of the intersubunit cavity, which is a known binding site for disulfide reductase inhibitors. Cell biological experiments indicate that P. falciparum TrxR is indeed targeted in the parasite by specific inhibitors with antimalarial activity. Differences between P. falciparum and human TrxR and details on substrate reduction and inhibitor binding provide the first solid basis for structure-based drug development and lead optimization.
Assuntos
Plasmodium falciparum , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Substituição de Aminoácidos/fisiologia , Antimaláricos/química , Antimaláricos/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína/genética , Serina/química , Serina/genética , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/genéticaRESUMO
In 2010, GlaxoSmithKline published the structures of 13533 chemical starting points for antimalarial lead identification. By using an agglomerative structural clustering technique followed by computational filters such as antimalarial activity, physicochemical properties, and dissimilarity to known antimalarial structures, we have identified 47 starting points for lead optimization. Their structures are provided. We invite potential collaborators to work with us to discover new clinical candidates.
RESUMO
Rapid triaging of three series of related hits selected from the Tres Cantos Anti-Malarial Set (TCAMS) are described. A triazolopyrimidine series was deprioritized due to delayed inhibition of parasite growth. A lactic acid series has derivatives with IC50 < 500 nM in a standard Plasmodium falciparum in vitro whole cell assay (Pf assay) but shows half-lives of < 30 min in both human and murine microsomes. Compound 19, from a series of cyclopropyl carboxamides, is a highly potent in vitro inhibitor of P. falciparum (IC50 = 3 nM) and has an oral bioavailability of 55% in CD-1 mice and an ED90 of 20 mg/kg after oral dosing in a nonmyelo-depleted P. falciparum murine model.