Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
EMBO Rep ; 24(5): e55543, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36880575

RESUMO

Regulatory T (T reg) cells developing in the thymus are essential to maintain tolerance and prevent fatal autoimmunity in mice and humans. Expression of the T reg lineage-defining transcription factor FoxP3 is critically dependent upon T cell receptor (TCR) and interleukin-2 (IL-2) signaling. Here, we report that ten-eleven translocation (Tet) enzymes, which are DNA demethylases, are required early during double-positive (DP) thymic T cell differentiation and prior to the upregulation of FoxP3 in CD4 single-positive (SP) thymocytes, to promote Treg differentiation. We show that Tet3 selectively controls the development of CD25- FoxP3lo CD4SP Treg cell precursors in the thymus and is critical for TCR-dependent IL-2 production, which drive chromatin remodeling at the FoxP3 locus as well as other Treg-effector gene loci in an autocrine/paracrine manner. Together, our results demonstrate a novel role for DNA demethylation in regulating the TCR response and promoting Treg cell differentiation. These findings highlight a novel epigenetic pathway to promote the generation of endogenous Treg cells for mitigation of autoimmune responses.


Assuntos
Desmetilação do DNA , Interleucina-2 , Humanos , Camundongos , Animais , Timo , Linfócitos T Reguladores , Receptores de Antígenos de Linfócitos T/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo
2.
EMBO Rep ; 23(2): e53968, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34866320

RESUMO

Mammalian development begins in transcriptional silence followed by a period of widespread activation of thousands of genes. DNA methylation reprogramming is integral to embryogenesis and linked to Tet enzymes, but their function in early development is not well understood. Here, we generate combined deficiencies of all three Tet enzymes in mouse oocytes using a morpholino-guided knockdown approach and study the impact of acute Tet enzyme deficiencies on preimplantation development. Tet1-3 deficient embryos arrest at the 2-cell stage with the most severe phenotype linked to Tet2. Individual Tet enzymes display non-redundant roles in the consecutive oxidation of 5-methylcytosine to 5-carboxylcytosine. Gene expression analysis uncovers that Tet enzymes are required for completion of embryonic genome activation (EGA) and fine-tuned expression of transposable elements and chimeric transcripts. Whole-genome bisulfite sequencing reveals minor changes of global DNA methylation in Tet-deficient 2-cell embryos, suggesting an important role of non-catalytic functions of Tet enzymes in early embryogenesis. Our results demonstrate that Tet enzymes are key components of the clock that regulates the timing and extent of EGA in mammalian embryos.


Assuntos
Dioxigenases , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA , Dioxigenases/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Camundongos
3.
Proc Natl Acad Sci U S A ; 117(7): 3621-3626, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024762

RESUMO

Ten-eleven translocation (TET) family enzymes (TET1, TET2, and TET3) oxidize 5-methylcytosine (5mC) and generate 5-hydroxymethylcytosine (5hmC) marks on the genome. Each TET protein also interacts with specific binding partners and partly plays their role independent of catalytic activity. Although the basic role of TET enzymes is well established now, the molecular mechanism and specific contribution of their catalytic and noncatalytic domains remain elusive. Here, by combining in silico and biochemical screening strategy, we have identified a small molecule compound, C35, as a first-in-class TET inhibitor that specifically blocks their catalytic activities. Using this inhibitor, we explored the enzymatic function of TET proteins during somatic cell reprogramming. Interestingly, we found that C35-mediated TET inactivation increased the efficiency of somatic cell programming without affecting TET complexes. Using high-throughput mRNA sequencing, we found that by targeting 5hmC repressive marks in the promoter regions, C35-mediated TET inhibition activates the transcription of the BMP-SMAD-ID signaling pathway, which may be responsible for promoting somatic cell reprogramming. These results suggest that C35 is an important tool for inducing somatic cell reprogramming, as well as for dissecting the other biological functions of TET enzymatic activities without affecting their other nonenzymatic roles.


Assuntos
Reprogramação Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Dioxigenases/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas Proto-Oncogênicas/antagonistas & inibidores , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Domínio Catalítico , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762023

RESUMO

Epigenetics is a rapidly developing science that has gained a lot of interest in recent years due to the correlation between characteristic epigenetic marks and cardiovascular diseases (CVDs). Epigenetic modifications contribute to a change in gene expression while maintaining the DNA sequence. The analysis of these modifications provides a thorough insight into the cardiovascular system from its development to its further functioning. Epigenetics is strongly influenced by environmental factors, including known cardiovascular risk factors such as smoking, obesity, and low physical activity. Similarly, conditions affecting the local microenvironment of cells, such as chronic inflammation, worsen the prognosis in cardiovascular diseases and additionally induce further epigenetic modifications leading to the consolidation of unfavorable cardiovascular changes. A deeper understanding of epigenetics may provide an answer to the continuing strong clinical impact of cardiovascular diseases by improving diagnostic capabilities, personalized medical approaches and the development of targeted therapeutic interventions. The aim of the study was to present selected epigenetic pathways, their significance in cardiovascular diseases, and their potential as a therapeutic target in specific medical conditions.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Epigênese Genética , Epigenômica , Exercício Físico , Fatores de Risco de Doenças Cardíacas
5.
Chembiochem ; 23(11): e202100605, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040547

RESUMO

The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Of special interest are the human homologues AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being found. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor, and inhibitor addition. Several methods are now available to assess the activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point-of-view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.


Assuntos
Dioxigenases , Ácidos Nucleicos , DNA/química , Dioxigenases/química , Escherichia coli/genética , Humanos , Ácidos Cetoglutáricos , RNA , Análise Espectral
6.
Chembiochem ; 23(7): e202100651, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35084086

RESUMO

5-Formylcytosine is an important nucleobase in epigenetic regulation, whose hydrate form has been implicated in the formation of 5-carboxycytosine as well as oligonucleotide binding events. The hydrate content of 5-formylcytosine and its uracil derivative has now been quantified using a combination of NMR and mass spectroscopic measurements as well as theoretical studies. Small amounts of hydrate can be identified for the protonated form of 5-formylcytosine and for neutral 5-formyluracil. For neutral 5-formylcytosine, however, direct detection of the hydrate was not possible due to its very low abundance. This is in full agreement with theoretical estimates.


Assuntos
DNA , Epigênese Genética , Citosina/análogos & derivados , Citosina/metabolismo , DNA/química , Concentração de Íons de Hidrogênio , Modelos Teóricos
7.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269864

RESUMO

Uterine fibroids (UFs) are monoclonal, benign tumors that contain abnormal smooth muscle cells and the accumulation of extracellular matrix (ECM). Although benign, UFs are a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. Many risk factors are involved in the pathogenesis of UFs via genetic and epigenetic mechanisms. The latter involving DNA methylation and demethylation reactions provide specific DNA methylation patterns that regulate gene expression. Active DNA demethylation reactions mediated by ten-eleven translocation proteins (TETs) and elevated levels of 5-hydroxymethylcytosine have been suggested to be involved in UF formation. This review paper summarizes the main findings regarding the function of TET enzymes and their activity dysregulation that may trigger the development of UFs. Understanding the role that epigenetics plays in the pathogenesis of UFs may possibly lead to a new type of pharmacological fertility-sparing treatment method.


Assuntos
Epigênese Genética , Leiomioma , Metilação de DNA , Feminino , Humanos , Recém-Nascido , Leiomioma/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163133

RESUMO

The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised mental health. While multiple factors may contribute to these outcomes, disturbed epigenetic programming during early development is one potential biological mechanism. The epigenome is programmed primarily in utero, and during this time, the developing fetus is highly susceptible to environmental factors such as nutritional insults. During neurodevelopment, epigenetic programming coordinates the formation of primitive central nervous system structures, neurogenesis, and neuroplasticity. Dysregulated epigenetic programming has been implicated in the aetiology of several neurodevelopmental disorders such as Tatton-Brown-Rahman syndrome. Accordingly, there is great interest in determining how maternal nutrient availability in pregnancy might affect the epigenetic status of offspring, and how such influences may present phenotypically. In recent years, a number of epigenetic enzymes that are active during embryonic development have been found to require vitamin C as a cofactor. These enzymes include the ten-eleven translocation methylcytosine dioxygenases (TETs) and the Jumonji C domain-containing histone lysine demethylases that catalyse the oxidative removal of methyl groups on cytosines and histone lysine residues, respectively. These enzymes are integral to epigenetic regulation and have fundamental roles in cellular differentiation, the maintenance of pluripotency and development. The dependence of these enzymes on vitamin C for optimal catalytic activity illustrates a potentially critical contribution of the nutrient during mammalian development. These insights also highlight a potential risk associated with vitamin C insufficiency during pregnancy. The link between vitamin C insufficiency and development is particularly apparent in the context of neurodevelopment and high vitamin C concentrations in the brain are indicative of important functional requirements in this organ. Accordingly, this review considers the evidence for the potential impact of maternal vitamin C status on neurodevelopmental epigenetics.


Assuntos
Deficiência de Ácido Ascórbico/complicações , Ácido Ascórbico/farmacologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Fenômenos Fisiológicos da Nutrição Materna , Transtornos do Neurodesenvolvimento/prevenção & controle , Neurogênese , Animais , Antioxidantes/farmacologia , Deficiência de Ácido Ascórbico/genética , Deficiência de Ácido Ascórbico/patologia , Feminino , Humanos , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/patologia , Gravidez
9.
Dev Biol ; 462(2): 180-196, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240642

RESUMO

Methylation of cytosine residues in DNA influences chromatin structure and gene transcription, and its regulation is crucial for brain development. There is mounting evidence that DNA methylation can be modulated by hormone signaling. We analyzed genome-wide changes in DNA methylation and their relationship to gene regulation in the brain of Xenopus tadpoles during metamorphosis, a thyroid hormone-dependent developmental process. We studied the region of the tadpole brain containing neurosecretory neurons that control pituitary hormone secretion, a region that is highly responsive to thyroid hormone action. Using Methylated DNA Capture sequencing (MethylCap-seq) we discovered a diverse landscape of DNA methylation across the tadpole neural cell genome, and pairwise stage comparisons identified several thousand differentially methylated regions (DMRs). During the pre-to pro-metamorphic period, the number of DMRs was lowest (1,163), with demethylation predominating. From pre-metamorphosis to metamorphic climax DMRs nearly doubled (2,204), with methylation predominating. The largest changes in DNA methylation were seen from metamorphic climax to the completion of metamorphosis (2960 DMRs), with 80% of the DMRs representing demethylation. Using RNA sequencing, we found negative correlations between differentially expressed genes and DMRs localized to gene bodies and regions upstream of transcription start sites. DNA demethylation at metamorphosis revealed by MethylCap-seq was corroborated by increased immunoreactivity for the DNA demethylation intermediates 5-hydroxymethylcytosine and 5-carboxymethylcytosine, and the methylcytosine dioxygenase ten eleven translocation 3 that catalyzes DNA demethylation. Our findings show that the genome of tadpole neural cells undergoes significant changes in DNA methylation during metamorphosis, and these changes likely influence chromatin architecture, and gene regulation programs occurring during this developmental period.


Assuntos
Encéfalo/embriologia , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Xenopus laevis/genética , Animais , Encéfalo/metabolismo , Cisteína Dioxigenase/metabolismo , DNA/genética , Desmetilação , Expressão Gênica , Larva/genética , Larva/metabolismo , Metamorfose Biológica/genética , RNA Mensageiro/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
10.
FASEB J ; 34(12): 16364-16382, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058355

RESUMO

5-hydroxymethylcytosine (5hmC) is an intermediate stage of DNA de-methylation. Its location in the genome also serves as an important regulatory signal for many biological processes and its levels change significantly with the etiology of Alzheimer's disease (AD). In keeping with this relationship, the TET family of enzymes which convert 5-methylcytosine (5mC) to 5hmC are responsive to the presence of Aß. Using hMeDIP-seq, we show that there is a genome-wide reduction of 5hmC that is found in neurons but not in astrocytes from 3xTg mice (an AD mouse model). Decreased TET enzymatic activities in the brains of persons who died with AD suggest that this reduction is the main cause for the loss of 5hmC. Overexpression of human TET catalytic domains (hTETCDs) from the TET family members, especially for hTET3CD, significantly attenuates the neurodegenerative process, including reduced Aß accumulation as well as tau hyperphosphorylation, and improve synaptic dysfunction in 3xTg mouse brain. Our findings define a crucial role of deregulated 5hmC epigenetics in the events leading to AD neurodegeneration.


Assuntos
5-Metilcitosina/análogos & derivados , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Metilação de DNA/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Epigenômica/métodos , Genoma/genética , Células HEK293 , Humanos , Camundongos , Doenças Neurodegenerativas/genética , Neurônios/metabolismo
11.
Cell Mol Life Sci ; 77(14): 2871-2883, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31646359

RESUMO

TET enzymes oxidize 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), a process thought to be intermediary in an active DNA demethylation mechanism. Notably, 5hmC is highly abundant in the brain and in neuronal cells. Here, we interrogated the function of Tet3 in neural precursor cells (NPCs), using a stable and inducible knockdown system and an in vitro neural differentiation protocol. We show that Tet3 is upregulated during neural differentiation, whereas Tet1 is downregulated. Surprisingly, Tet3 knockdown led to a de-repression of pluripotency-associated genes such as Oct4, Nanog or Tcl1, with concomitant hypomethylation. Moreover, in Tet3 knockdown NPCs, we observed the appearance of OCT4-positive cells forming cellular aggregates, suggesting de-differentiation of the cells. Notably, Tet3 KD led to a genome-scale loss of DNA methylation and hypermethylation of a smaller number of CpGs that are located at neurogenesis-related genes and at imprinting control regions (ICRs) of Peg10, Zrsr1 and Mcts2 imprinted genes. Overall, our results suggest that TET3 is necessary to maintain silencing of pluripotency genes and consequently neural stem cell identity, possibly through regulation of DNA methylation levels in neural precursor cells.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Dioxigenases/genética , Células-Tronco Neurais/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Impressão Genômica/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética
12.
Angew Chem Int Ed Engl ; 60(39): 21457-21463, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181314

RESUMO

The epigenetic marker 5-methyl-2'-deoxycytidine (5mdC) is the most prevalent modification to DNA. It is removed inter alia via an active demethylation pathway: oxidation by Ten-Eleven Translocation 5-methyl cytosine dioxygenase (TET) and subsequent removal via base excision repair or direct demodification. Recently, we have shown that the synthetic iron(IV)-oxo complex [FeIV (O)(Py5 Me2 H)]2+ (1) can serve as a biomimetic model for TET by oxidizing the nucleobase 5-methyl cytosine (5mC) to its natural metabolites. In this work, we demonstrate that nucleosides and even short oligonucleotide strands can also serve as substrates, using a range of HPLC and MS techniques. We found that the 5-position of 5mC is oxidized preferably by 1, with side reactions occurring only at the strand ends of the used oligonucleotides. A detailed study of the reactivity of 1 towards nucleosides confirms our results; that oxidation of the anomeric center (1') is the most common side reaction.


Assuntos
5-Metilcitosina/metabolismo , Materiais Biomiméticos/metabolismo , Dioxigenases/metabolismo , Compostos de Ferro/metabolismo , 5-Metilcitosina/química , Materiais Biomiméticos/química , Dioxigenases/química , Compostos de Ferro/química , Conformação Molecular
13.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374812

RESUMO

5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We analyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic drift. We tested primary fibroblast cultures originating from individuals aged 22-35 years and 74-94 years. Global quantities of methylation-related DNA modifications were estimated by the dot blot and colorimetric methods. Regions of the genome differentially hydroxymethylated with age (DHMRs) were identified by hMeDIP-seq and the MEDIPS and DiffBind algorithms. Global levels of DNA modifications were not associated with age. We identified numerous DHMRs that were enriched within introns and intergenic regions and most commonly associated with the H3K4me1 histone mark, promoter-flanking regions, and CCCTC-binding factor (CTCF) binding sites. However, only seven DHMRs were identified by both algorithms and all of their settings. Among them, hypo-hydroxymethylated DHMR in the intron of Rab Escort Protein 1 (CHM) coexisted with increased expression in old cells, while increased 5-hydroxymethylation in the bodies of Arginine and Serine Rich Protein 1 (RSRP1) and Mitochondrial Poly(A) Polymerase (MTPAP) did not change their expression. These age-related differences were not associated with changes in the expression of any of the ten-eleven translocation (TET) enzymes or their activity. In conclusion, the distribution of 5hmC in DNA of in vivo aged human fibroblasts underwent age-associated modifications. The identified DHMRs are, likely, marker changes.


Assuntos
5-Metilcitosina/análogos & derivados , Metilação de DNA , Envelhecimento da Pele/genética , 5-Metilcitosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas
14.
Angew Chem Int Ed Engl ; 59(28): 11312-11315, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32271979

RESUMO

TET family enzymes are known for oxidation of the 5-methyl substituent on 5-methylcytosine (5mC) in DNA. 5mC oxidation generates the stable base 5-hydroxymethylcytosine (5hmC), starting an indirect, multi-step process that ends with reversion of 5mC to unmodified cytosine. While probing the nucleobase determinants of 5mC recognition, we discovered that TET enzymes are also proficient as direct N-demethylases of cytosine bases. We find that N-demethylase activity can be readily observed on substrates lacking a 5-methyl group and, remarkably, TET enzymes can be similarly proficient in either oxidation of 5mC or demethylation of N4-methyl substituents. Our results indicate that TET enzymes can act as both direct and indirect demethylases, highlight the active-site plasticity of these FeII /α-ketoglutarate-dependent dioxygenases, and suggest activity on unexplored substrates that could reveal new TET biology.


Assuntos
DNA/metabolismo , Dioxigenases/metabolismo , Nitrogênio/metabolismo , 5-Metilcitosina/metabolismo , Domínio Catalítico , Metilação de DNA , Desmetilação , Humanos , Oxirredução , Análise Espectral/métodos
15.
Chemistry ; 25(52): 12091-12097, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31211459

RESUMO

Ten-eleven-translocation (TET) methyl cytosine dioxygenases play a key role in epigenetics by oxidizing the epigenetic marker 5-methyl cytosine (5mC) to 5-hydroxymethyl cytosine (5hmC), 5-formyl cytosine (5fC), and 5-carboxy cytosine (5cC). Although much of the metabolism of 5mC has been studied closely, certain aspects-such as discrepancies among the observed catalytic activity of TET enzymes and calculated bond dissociation energies of the different cytosine substrates-remain elusive. Here, it is reported that the DNA base 5mC is oxidized to 5hmC, 5fC, and 5cC by a biomimetic iron(IV)-oxo complex, reminiscent of the activity of TET enzymes. Studies show that 5hmC is preferentially turned over compared with 5mC and 5fC and that this is in line with the calculated bond dissociation energies. The optimized syntheses of d3 -5mC and d2 -5hmC are also reported and in the reaction with the biomimetic iron(IV)-oxo complex these deuterated substrates showed large kinetic isotope effects, confirming the hydrogen abstraction as the rate-limiting step. Taken together, these results shed light on the intrinsic reactivity of the C-H bonds of epigenetic markers and the contribution of the second coordination sphere in TET enzymes.


Assuntos
Complexos de Coordenação/química , Dioxigenases/química , Ferro/química , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Materiais Biomiméticos , Cério/química , Citosina/análogos & derivados , Citosina/química , Epigênese Genética , Cinética , Oxirredução , Termodinâmica
16.
Anal Biochem ; 534: 28-35, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28647531

RESUMO

Enzymatic methylation at carbon five on cytosine (5mC) in DNA is a hallmark of mammalian epigenetic programming and is critical to gene regulation during early embryonic development. It has recently been shown that dynamic erasure of 5mC by three members of the ten-eleven translocation (TET) family plays a key role in cellular differentiation. TET enzymes belong to Fe (II)- and 2-ketoglutarate (2KG) dependent dioxygenases that successively oxidize 5mC to 5-hydroxymethyl cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5CaC), thus providing a chemical basis for the removal of 5mC which once was thought to be a permanent mark in mammalian genome. Since then a wide range of biochemical assays have been developed to characterize TET activity. Majority of these methods require multi-step processing to detect and quantify the TET-mediated oxidized products. In this study, we have developed a MALDI mass spectrometry based method that directly measures the TET activity with high sensitivity while eliminating the need for any intermediate processing steps. We applied this method to the measurement of enzymatic activity of TET2 and 3, Michaleis-Menten parameters (KM and kcat) of TET-2KG pairs and inhibitory concentration (IC50) of known small-molecule inhibitors of TETs. We further demonstrated the suitability of the assay to analyze chemoenzymatic labeling of 5hmC by ß-glucosyltransferase, highlighting the potential for broad application of our method in deconvoluting the functions of novel DNA demethylases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Biocatálise , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/antagonistas & inibidores , Dioxigenases/análise , Dioxigenases/antagonistas & inibidores , Humanos , Espectrometria de Massas , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
17.
RNA Biol ; 14(9): 1099-1107, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28440690

RESUMO

Chemical modification of nucleobases plays an important role for the control of gene expression on different levels. That includes the modulation of translation by modified tRNA-bases or silencing and reactivation of genes by methylation and demethylation of cytosine in promoter regions. Especially dynamic methylation of adenine and cytosine is essential for cells to adapt to their environment or for the development of complex organisms from a single cell. Errors in the cytosine methylation pattern are associated with most types of cancer and bacteria use methylated nucleobases to resist antibiotics. This Point of View wants to shed light on the known and potential chemistry of DNA and RNA methylation and demethylation. Understanding the chemistry of these processes on a molecular level is the first step towards a deeper knowledge about their regulation and function and will help us to find ways how nucleobase methylation can be manipulated to treat diseases.


Assuntos
Metilação de DNA , DNA/química , DNA/metabolismo , Desmetilação , Metilação , RNA/química , RNA/metabolismo , Animais , Epigênese Genética , Humanos
18.
Genomics ; 104(5): 334-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200796

RESUMO

Epigenetic modifications of the genome play important roles in controlling gene transcription thus regulating several molecular and cellular processes. A novel epigenetic modification - 5-hydroxymethylcytosine (5hmC) - has been recently described and attracted a lot of attention due to its possible involvement in the active DNA demethylation mechanism. TET enzymes are dioxygenases capable of oxidizing the methyl group of 5-methylcytosines (5mC) and thus converting 5mC into 5hmC. Although most of the work on TET enzymes and 5hmC has been carried out in embryonic stem (ES) cells, the highest levels of 5hmC occur in the brain and in neurons, pointing to a role for this epigenetic modification in the control of neuronal differentiation, neural plasticity and brain functions. Here we review the most recent advances on the role of TET enzymes and DNA hydroxymethylation in neuronal differentiation and function.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Neurogênese , Animais , Citosina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Humanos , Neurônios/citologia , Neurônios/fisiologia , Oxirredução
20.
Beilstein J Org Chem ; 10: 7-11, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24454558

RESUMO

In this work we present for the first time the synthesis of novel 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) derivatives that can be used as tools in the emerging field of epigenetics for deciphering chemical biology of TET-mediated processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA