Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 169: 105684, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022396

RESUMO

Osteosarcoma, a highly malignant tumor, is characterized by widespread and recurrent chromosomal and genetic abnormalities. In recent years, a number of elaborated sequencing analyses have made it possible to cluster the osteosarcoma based on the identification of candidate driver genes and develop targeted therapy. Here, we reviewed recent next-generation genome sequencing studies and advances in targeted therapies for osteosarcoma based on molecular classification. First, we stratified osteosarcomas into ten molecular subtypes based on genetic changes. And we analyzed potential targeted therapies for osteosarcoma based on the identified molecular subtypes. Finally, the development of targeted therapies for osteosarcoma investigated in clinical trials were further summarized and discussed. Therefore, we indicated the importance of molecular classification on the targeted therapy for osteosarcoma. And the stratification of patients based on the genetic characteristics of osteosarcoma will help to obtain a better therapeutic response to targeted therapies, bringing us closer to the era of personalized medicine.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Terapia de Alvo Molecular , Osteossarcoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/classificação , Neoplasias Ósseas/genética , Genes Neoplásicos/genética , Humanos , Terapia de Alvo Molecular/métodos , Osteossarcoma/classificação , Osteossarcoma/genética
2.
Pharmacol Res ; 129: 156-176, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29154989

RESUMO

Breast cancer is a collection of distinct tumor subtypes that are driven by unique gene expression profiles. These transcriptomes are controlled by various epigenetic marks that dictate which genes are expressed and suppressed. During carcinogenesis, extensive restructuring of the epigenome occurs, including aberrant acetylation, alteration of methylation patterns, and accumulation of epigenetic readers at oncogenes. As epigenetic alterations are reversible, epigenome-modulating drugs could provide a mechanism to silence numerous oncogenes simultaneously. Here, we review the impact of inhibitors of the Bromodomain and Extraterminal (BET) family of epigenetic readers in breast cancer. These agents, including the prototypical BET inhibitor JQ1, have been shown to suppress a variety of oncogenic pathways while inducing minimal, if any, toxicity in models of several subtypes of breast cancer. BET inhibitors also synergize with multiple approved anti-cancer drugs, providing a greater response in breast cancer cell lines and mouse models than either single agent. The combined findings of the studies discussed here provide an excellent rationale for the continued investigation of the utility of BET inhibitors in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular , Proteínas/química , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA