RESUMO
This study employs TLD1433, a RuII -based photodynamic therapy (PDT) agent in human clinical trials, as a benchmark to establish protocols for studying the excited-state dynamics of photosensitizers (PSs) in cellulo, in the local environment provided by human cancer cells. Very little is known about the excited-state properties of any PS in live cells, and for TLD1433, it is terra incognita. This contribution targets a general problem in phototherapy, which is how to interrogate the light-triggered, function-determining processes of the PSs in the relevant biological environment, and establishes methodological advances to study the ultrafast photoinduced processes for TLD1433 when taken up by MCF7 cells. We generalize the methodological developments and results in terms of molecular physics by applying them to TLD1433's analogue TLD1633, making this study a benchmark to investigate the excited-state dynamics of phototoxic compounds in the complex biological environment.
Assuntos
Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Células MCF-7RESUMO
The anti-viral properties of a small (≈1 kDa), novel Ru(II) photo dynamic compound (PDC), referred to as TLD-1433 (Ruvidar™), are presented. TLD-1433 had previously been demonstrated to exert strong anti-bacterial and anti-cancer properties. We evaluated the capacity of TLD-1433 to inactivate several human pathogenic viruses. TLD-1433 that was not photo-activated was capable of effectively inactivating 50 % of influenza H1N1 virus (ID50) at a concentration of 117 nM. After photo-activation, the ID50 was reduced to <10 nM. The dose of photo-activated TLD-1433 needed to reduce H1N1 infectivity >99 % (ID99) was approximately 170 nM. Similarly, the ID99 of photo-activated TLD-1433 was determined to range from about 20 to 120 nM for other tested enveloped viruses; specifically, a human coronavirus, herpes simplex virus, the poxvirus Vaccinia virus, and Zika virus. TLD-1433 also inactivated two tested non-enveloped viruses; specifically, adenovirus type 5 and mammalian orthoreovirus, but at considerably higher concentrations. Analyses of TLD-1433-treated membranes suggested that lipid peroxidation was a major contributor to enveloped virus inactivation. TLD-1433-mediated virus inactivation was temperature-dependent, with approximately 10-fold more efficient virucidal activity when viruses were treated at 37 °C than when treated at room temperature (â¼22 °C). The presence of fetal bovine serum and virus solution turbidity reduced TLD-1433-mediated virucidal efficiency. Immunoblots of TLD-1433-treated human coronavirus indicated the treated spike protein remained particle-associated.
RESUMO
Background: A phase 1b study of photosensitizer TLD-1433-mediated photodynamic therapy (PDT) was performed in bacillus Calmette-Guérin (BCG)-unresponsive non-muscle-invasive bladder cancer (NMIBC) patients. Objective: The primary objectives were safety and tolerability of PDT, with secondary objectives of (1) pharmacokinetic (PK) properties of TLD-1433 and (2) efficacy, as evaluated by recurrence-free survival and complete response (CR) at 90 and 180 d for patients treated at the maximum recommended starting dose (0.35 mg/cm2 bladder surface area) and the therapeutic dose (0.70 mg/cm2). Design setting and participants: Six BCG-unresponsive patients were enrolled in an open-label, single-arm, dose-escalating study of PDT. TLD-1433 was instilled intravesically for 60 min preoperatively. PDT was performed under general anesthesia using intravesically delivered irradiation of the bladder wall with green light (520 nm) to a dose of 90 J/cm2. Outcome measurements and statistical analysis: Patients were followed by standard cystoscopy and cytology for up to 18 mo to assess time to recurrence. Results and limitations: PDT was well tolerated by all patients. All patients experienced at least one grade ≤2 adverse event (AE). There were no patient deaths or light sensitivity reactions. The most common AE was moderate bladder irritability, which resolved within the first weeks after treatment. AEs were independent of the TLD-1433 dose. TLD-1433 was cleared in the urine and from the plasma within 24 and 72 h, respectively. Of three patients treated at the therapeutic dose, two achieved a CR at 180 d, which was durable at 18 mo. The other patient was diagnosed with metastatic disease at 138 d. Conclusions: PDT with TLD-1433 appears safe for the treatment of BCG-unresponsive NMIBC. Early efficacy signals from full-dose photosensitizer are encouraging and warrant phase 2 trial investigation. The safety and PK results obtained support the potential for administration of consecutive PDT treatments as required. Patient summary: Photodynamic therapy with TLD-1433 appears to be safe and effective for the treatment of bacillus Calmette-Guérin (BCG)-unresponsive bladder cancer.
RESUMO
TLD1433 is the first Ru(II) complex to be tested as a photodynamic therapy agent in a clinical trial. In this contribution we study TLD1433 in the context of structurally-related Ru(II)-imidozo[4,5-f][1,10]phenanthroline (ip) complexes appended with thiophene rings to decipher the unique photophysical properties which are associated with increasing oligothiophene chain length. Substitution of the ip ligand with ter- or quaterthiophene changes the nature of the long-lived triplet state from metal-to-ligand charge-transfer to 3ππ* character. The addition of the third thiophene thus presents a critical juncture which not only determines the photophysics of the complex but most importantly its capacity for 1O2 generation and hence the potential of the complex to be used as a photocytotoxic agent. ENTRY FOR THE TABLE OF CONTENTS: A low-lying triplet intraligand state (3IL) determines the properties of the long-lived excited states in a series of Ru(II) complexes. The 3IL state can be accessed by increasing the length of an oligothiophene chain. The 3IL state is extremely efficient at generating 1O2 and thus enhances the potency of the complexes as PDT agents.
RESUMO
SIGNIFICANCE: Photodynamic therapy (PDT) could become a treatment option for nonmuscle invasive bladder cancer when the current high morbidity rate associated with red light PDT and variable PDT dose can be overcome through a combination of intravesical instillation of the photosensitizer and the use of green light creating a steep PDT dose gradient. AIM: To determine how a high PDT selectivity can be maintained throughout the bladder wall considering other efficacy determining parameters, in particular, the average optical properties of the mucosal layer governing the fluence rate multiplication factor, as well as the bladder shape and the position of the emitter in relationship to the bladder wall. APPROACH: We present three irradiance monitoring systems and evaluate their ability to enable selective bladder PDT considering previously determined photodynamic threshold values for the bladder cancer, mucosa and urothelium in a preclinical model, and the photosensitizer's specific uptake ratio. Monte Carlo-based light propagation simulations performed for six human bladders at the time of therapy for a range of tissue optical properties. The performance of one irradiance sensing device in a clinical phase 1B trial is presented to underline the impact of irradiance monitoring, and it is compared to the Monte Carlo-derived dose surface histogram. RESULTS: Monte Carlo simulations showed that irradiance monitoring systems need to comprise at least three sensors. Light scattering inside the bladder void needs to be minimized to prevent increased heterogeneity of the irradiance. The dose surface histograms vary significantly depending on the bladder shape and bladder volume but are less dependent on tissue optical properties. CONCLUSIONS: We demonstrate the need for adequate irradiance monitoring independent of a photosensitizer's specific uptake ratio.
Assuntos
Fotoquimioterapia , Neoplasias da Bexiga Urinária , Humanos , Método de Monte Carlo , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
Intra-operative photodynamic therapy (IO-PDT) in combination with surgery for the treatment of non-small cell lung cancer and malignant pleural mesothelioma has shown promise in improving overall survival in patients. Here, we developed a PDT platform consisting of a ruthenium-based photosensitizer (TLD1433) activated by an optical surface applicator (OSA) for the management of residual disease. Human lung adenocarcinoma (A549) cell viability was assessed after treatment with TLD1433-mediated PDT illuminated with either 532- or 630-nm light with a micro-lens laser fiber. This TLD1433-mediated PDT induced an EC50 of 1.98 µM (J/cm2) and 4807 µM (J/cm2) for green and red light, respectively. Cells were then treated with 10 µM TLD1433 in a 96-well plate with the OSA using two 2-cm radial diffusers, each transmitted 532 nm light at 50 mW/cm for 278 s. Monte Carlo simulations of the surface light propagation from the OSA computed light fluence (J/cm2) and irradiance (mW/cm2) distribution. In regions where 100% loss in cell viability was measured, the simulations suggest that >20 J/cm2 of 532 nm was delivered. Our studies indicate that TLD1433-mediated PDT with the OSA and light simulations have the potential to become a platform for treatment planning for IO-PDT.