Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO J ; 40(24): e108684, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726281

RESUMO

Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fator de Ligação a CCAAT/metabolismo , Mutação , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Fosforilação , Proteólise , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255990

RESUMO

Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 1/C-REPEAT BINDING FACTOR (DREB1/CBF) transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature. Temperature-responsive transcriptomes show a diurnal cycle and peak expression levels at specific times of throughout the day. Circadian clock genes play essential roles in allowing plants to maintain homeostasis by accommodating temperature changes within the normal temperature range or by altering protein properties and morphogenesis at the cellular level for plant survival and growth under temperature stress conditions. Recent studies revealed that the central oscillator genes CIRCADIAN CLOCK ASSOCIATED 1/LATE ELONGATED HYPOCOTYL (CCA1/LHY) and PSEUDO-RESPONSE REGULATOR5/7/9 (PRR5/7/9), as well as the EVENING COMPLEX (EC) genes REVEILLE4/REVEILLE8 (REV4/REV8), were involved in the DREB1 pathway of the cold signaling transcription factor and regulated the thermomorphogenesis gene PIF4. Further studies showed that another central oscillator, TIMING OF CAB EXPRESSION 1 (TOC1), and the regulatory protein ZEITLUPE (ZTL) are also involved. These studies led to attempts to utilize circadian clock genes for the acquisition of temperature-stress resistance in crops. In this review, we highlight circadian rhythm regulation and the clock genes involved in plant responses to temperature changes, as well as strategies for plant survival in a rapidly changing global climate.


Assuntos
Relógios Circadianos , Temperatura , Relógios Circadianos/genética , Temperatura Baixa , Ritmo Circadiano/genética , Clima
3.
Plant J ; 110(4): 932-945, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218268

RESUMO

Flavonoids are a well-known class of specialized metabolites that play key roles in plant development, reproduction, and survival. Flavonoids are also of considerable interest from the perspective of human health, as both phytonutrients and pharmaceuticals. RNA sequencing analysis of an Arabidopsis null allele for chalcone synthase (CHS), which catalyzes the first step in flavonoid metabolism, has uncovered evidence that these compounds influence the expression of genes associated with the plant circadian clock. Analysis of promoter-luciferase constructs further showed that the transcriptional activity of CCA1 and TOC1, two key clock genes, is altered in CHS-deficient seedlings across the day/night cycle. Similar findings for a mutant line lacking flavonoid 3'-hydroxylase (F3'H) activity, and thus able to synthesize mono- but not dihydroxylated B-ring flavonoids, suggests that the latter are at least partially responsible; this was further supported by the ability of quercetin to enhance CCA1 promoter activity in wild-type and CHS-deficient seedlings. The effects of flavonoids on circadian function were also reflected in photosynthetic activity, with chlorophyll cycling abolished in CHS- and F3'H-deficient plants. Remarkably, the same phenotype was exhibited by plants with artificially high flavonoid levels, indicating that neither the antioxidant potential nor the light-screening properties of flavonoids contribute to optimal clock function, as has recently also been demonstrated in animal systems. Collectively, the current experiments point to a previously unknown connection between flavonoids and circadian cycling in plants and open the way to better understanding of the molecular basis of flavonoid action.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Plântula/metabolismo
4.
Plant Cell Physiol ; 64(11): 1289-1300, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37552691

RESUMO

Plants adapt to periodic environmental changes, such as day and night, by using circadian clocks. Cell division and elongation are primary steps to adjust plant development according to their environments. In Arabidopsis, hypocotyl elongation has been studied as a representative model to understand how the circadian clock regulates cell elongation. However, it remains unknown whether similar phenomena exist in other organs, such as roots, where circadian clocks regulate physiological responses. Here, we show that root hair elongation is controlled by both light and the circadian clock. By developing machine-learning models to automatically analyze the images of root hairs, we found that genes encoding major components of the central oscillator, such as TIMING OF CAB EXPRESSION1 (TOC1) or CIRCADIAN CLOCK ASSOCIATED1 (CCA1), regulate the rhythmicity of root hair length. The partial illumination of light to either shoots or roots suggested that light received in shoots is mainly responsible for the generation of root hair rhythmicity. Furthermore, grafting experiments between wild-type (WT) and toc1 plants demonstrated that TOC1 in shoots is responsible for the generation of root hair rhythmicity. Our results illustrate the combinational effects of long-distance signaling and the circadian clock on the regulation of root hair length.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Relógios Circadianos/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/fisiologia
5.
J Integr Plant Biol ; 64(5): 1044-1058, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297190

RESUMO

Extremely high or low autophagy levels disrupt plant survival under nutrient starvation. Recently, autophagy has been reported to display rhythms in animals. However, the mechanism of circadian regulation of autophagy is still unclear. Here, we observed that autophagy has a robust rhythm and that various autophagy-related genes (ATGs) are rhythmically expressed in Arabidopsis. Chromatin immunoprecipitation (ChIP) and dual-luciferase (LUC) analyses showed that the core oscillator gene TIMING OF CAB EXPRESSION 1 (TOC1) directly binds to the promoters of ATG (ATG1a, ATG2, and ATG8d) and negatively regulates autophagy activities under nutritional stress. Furthermore, autophagy defects might affect endogenous rhythms by reducing the rhythm amplitude of TOC1 and shortening the rhythm period of CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). Autophagy is essential for the circadian clock pattern in seedling development and plant sensitivity to nutritional deficiencies. Taken together, our studies reveal a plant strategy in which the TOC1-ATG axis involved in autophagy-rhythm crosstalk to fine-tune the intensity of autophagy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(17): 4870-5, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071129

RESUMO

A mechanism for integrating light perception and the endogenous circadian clock is central to a plant's capacity to coordinate its growth and development with the prevailing daily light/dark cycles. Under short-day (SD) photocycles, hypocotyl elongation is maximal at dawn, being promoted by the collective activity of a quartet of transcription factors, called PIF1, PIF3, PIF4, and PIF5 (phytochrome-interacting factors). PIF protein abundance in SDs oscillates as a balance between synthesis and photoactivated-phytochrome-imposed degradation, with maximum levels accumulating at the end of the long night. Previous evidence shows that elongation under diurnal conditions (as well as in shade) is also subjected to circadian gating. However, the mechanism underlying these phenomena is incompletely understood. Here we show that the PIFs and the core clock component Timing of CAB expression 1 (TOC1) display coincident cobinding to the promoters of predawn-phased, growth-related genes under SD conditions. TOC1 interacts with the PIFs and represses their transcriptional activation activity, antagonizing PIF-induced growth. Given the dynamics of TOC1 abundance (displaying high postdusk levels that progressively decline during the long night), our data suggest that TOC1 functions to provide a direct output from the core clock that transiently constrains the growth-promoting activity of the accumulating PIFs early postdusk, thereby gating growth to predawn, when conditions for cell elongation are optimal. These findings unveil a previously unrecognized mechanism whereby a core circadian clock output signal converges immediately with the phytochrome photosensory pathway to coregulate directly the activity of the PIF transcription factors positioned at the apex of a transcriptional network that regulates a diversity of downstream morphogenic responses.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Mapeamento de Interação de Proteínas , Plântula/crescimento & desenvolvimento , Transcrição Gênica
7.
BMC Plant Biol ; 18(1): 33, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29444635

RESUMO

BACKGROUND: Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. RESULTS: We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. CONCLUSIONS: The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.


Assuntos
Relógios Circadianos/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Sementes/fisiologia , Vigna/metabolismo , Vigna/fisiologia , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética
8.
J Exp Bot ; 67(9): 2665-73, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27012281

RESUMO

As most organisms age, their appearance, physiology, and behaviour alters as part of a life history strategy that maximizes their fitness over their lifetime. The passage of time is measured by organisms and is used to modulate these age-related changes. Organisms have an endogenous time measurement system called the circadian clock. This endogenous clock regulates many physiological responses throughout the life history of organisms to enhance their fitness. However, little is known about the relation between ageing and the circadian clock in plants. Here, we investigate the association of leaf ageing with circadian rhythm changes to better understand the regulation of life-history strategy in Arabidopsis. The circadian periods of clock output genes were approximately 1h shorter in older leaves than younger leaves. The periods of the core clock genes were also consistently shorter in older leaves, indicating an effect of ageing on regulation of the circadian period. Shortening of the circadian period with leaf age occurred faster in plants grown under a long photoperiod compared with a short photoperiod. We screened for a regulatory gene that links ageing and the circadian clock among multiple clock gene mutants. Only mutants for the clock oscillator TOC1 did not show a shortened circadian period during leaf ageing, suggesting that TOC1 may link age to changes in the circadian clock period. Our findings suggest that age-related information is incorporated into the regulation of the circadian period and that TOC1 is necessary for this integrative process.


Assuntos
Envelhecimento/fisiologia , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Folhas de Planta/fisiologia , Proteínas de Arabidopsis/fisiologia , Fotoperíodo , RNA Mensageiro/metabolismo , Fatores de Transcrição/fisiologia
9.
Ann Bot ; 116(1): 15-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26070640

RESUMO

BACKGROUND AND AIMS: An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. METHODS: Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. KEY RESULTS: Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. CONCLUSIONS: Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Relógios Biológicos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Genes de Plantas , Luz Solar , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Biológicos/efeitos da radiação , Calibragem , Modelos Biológicos , Fatores de Tempo
10.
Plant Commun ; 5(5): 100833, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38327058

RESUMO

Plants can sense temperature changes and adjust their growth accordingly. In Arabidopsis, high ambient temperatures stimulate stem elongation by activating a key thermoresponsive regulator, PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Here, we show that warmth promotes the nighttime transcription of GI, which is necessary for the high temperature-induced transcription of TOC1. Genetic analyses suggest that GI prevents excessive thermoresponsive growth by inhibiting PIF4, with this regulatory mechanism being partially reliant on TOC1. GI transcription is repressed by ELF3 and HY5, which concurrently inhibit PIF4 expression and activity. Temperature elevation causes the deactivation or degradation of ELF3 and HY5, leading to PIF4 activation and relief of GI transcriptional repression at high temperatures. This allows PIF4 to further activate GI transcription in response to elevated temperatures. GI, in turn, inhibits PIF4, establishing a negative feedback loop that fine-tunes PIF4 activity. In addition, we demonstrate that ELF3, HY5, and PIF4 regulate GI transcription by modulating the enrichment of histone variant H2A.Z at the GI locus. Together, our findings suggest that thermal release of a negative feedback loop finely adjusts plant thermomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Retroalimentação Fisiológica , Temperatura , Temperatura Alta , Vernalização
11.
Plant Sci ; 344: 112087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599247

RESUMO

The circadian clock plays a critical role in regulating plant physiology and metabolism. However, the way in which the clock impacts the regulation of lipid biosynthesis in seeds is partially understood. In the present study, we characterized the seed fatty acid (FA) and glycerolipid (GL) compositions of pseudo-response regulator mutants. Among these mutants, toc1 (timing of cab expression 1) exhibited the most significant differences compared to control plants. These included an increase in total FA content, characterized by elevated levels of linolenic acid (18:3) along with a reduction in linoleic acid (18:2). Furthermore, our findings revealed that toc1 developing seeds showed increased expression of genes related to FA metabolism. Our results show a connection between TOC1 and lipid metabolism in Arabidopsis seeds.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sementes , Ácido alfa-Linolênico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Ácido alfa-Linolênico/metabolismo , Regulação da Expressão Gênica de Plantas , Relógios Circadianos/genética , Ácidos Graxos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Metabolismo dos Lipídeos
12.
Front Plant Sci ; 13: 1052017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438085

RESUMO

Symbiotic nitrogen fixation is an important factor affecting the yield and quality of leguminous crops. Nodulation is regulated by a complex network comprising several transcription factors. Here, we functionally characterized the role of a TOC1 family member, GmTOC1b, in soybean (Glycine max) nodulation. RT-qPCR assays showed that GmTOC1b is constitutively expressed in soybean. However, GmTOC1b was also highly expressed in nodules, and GmTOC1 localized to the cell nucleus, based on transient transformation in Nicotiana benthamiana leaves. Homozygous Gmtoc1b mutant plants exhibited increased root hair curling and produced more infection threads, resulting in more nodules and greater nodule fresh weight. By contrast, GmTOC1b overexpression inhibited nodulation. Furthermore, we also showed that GmTOC1b represses the expression of nodulation-related genes including GmNIN2a and GmENOD40-1 by binding to their promoters. We conclude that GmTOC1b functions as a transcriptional repressor to inhibit nodulation by repressing the expression of key nodulation-related genes including GmNIN2a, GmNIN2b, and GmENOD40-1 in soybean.

13.
FEBS Lett ; 596(15): 1871-1880, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644867

RESUMO

Environmental stresses restrict plant growth and development and decrease crop yield. The circadian clock is associated with the ability of a plant to adapt to daily environmental fluctuations and the production and consumption of energy. Here, we investigated the role of Arabidopsis Universal Stress Protein (USP; At3g53990) in the circadian regulation of nuclear clock genes. The Arabidopsis usp knockout mutant line exhibited critically diminished circadian amplitude of the central oscillator CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) but enhanced the amplitude of TIMING OF CAB EXPRESSION 1 (TOC1). However, the expression of USP under the control of its own promoter restored the circadian timing of both genes, suggesting that USP regulates the circadian rhythm of Arabidopsis central clock genes, CCA1 and TOC1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Front Plant Sci ; 13: 809563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645991

RESUMO

The plants' internal circadian clock can strongly influence phytochrome signaling in response to the changes in the external light environment. Phytochrome A (phyA) is the photoreceptor that mediates various far-red (FR) light responses. phyA signaling is modulated by FHY3 and FAR1, which directly activate the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. However, the mechanisms by which the clock regulates phyA signaling are poorly understood. Here, we discovered that FHY1 expression is diurnally regulated, peaking in the middle of the day. Two Arabidopsis core clock components, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and TIMING OF CAB EXPRESSION1 (TOC1), repress FHY3/FAR1-mediated FHY1/FHL activation. Consistently, the specific expression pattern of FHY1 under diurnal conditions is altered in cca1-1, toc1-101, CCA1, and TOC1 overexpression plants. Furthermore, far-red induced gene expression and particularly nuclear accumulation of phyA are compromised in TOC1 and CCA1 overexpression seedlings. Our results therefore revealed a previously unidentified FHY1 expression pattern in diurnal cycles, which is negatively regulated by CCA1 and TOC1.

15.
Plant Physiol Biochem ; 185: 198-220, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704989

RESUMO

Expression of the central circadian oscillator components CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), TIMING OF CAB1 (TOC1), GIGANTEA (GI), and CONSTANS (CO) occurs in Glycine max root cells (syncytia) parasitized by the nematode Heterodera glycines while undergoing resistance, indicating a defense role. GmCCA1-1 relative transcript abundance (RTA) in roots experiencing overexpression (OE) or RNA interference (RNAi) is characterized by rhythmic oscillations, compared to a ribosomal protein gene (GmRPS21) control. A GmCCA1-1 RTA change, advancing by 12 h, exists in H. glycines-infected as compared to uninfected controls in wild-type, H. glycines-resistant, G. max[Peking/PI 548402]. The G. max[Peking/PI 548402] transgenic controls exhibit the RTA change by 4 h post infection (hpi), not consistently occurring in the H. glycines-susceptible G. max[Williams 82/PI 518671] until 56 hpi. GmCCA1-1 expression is observed to be reduced in H. glycines-infected GmCCA1-1-OE roots as compared to non-infected transgenic roots with no significant change observed among RNAi roots. The GmCCA1-1 expression in transgenic GmCCA1-1-OE roots remains higher than control and RNAi roots. Decreased GmCCA1-1 mRNA among infected roots shows the altered expression is targeted by H. glycines. Gene expression of proven defense genes including 9 different mitogen activated protein kinases (GmMAPKs), NON-RACE SPECIFIC DISEASE RESISTANCE 1 (GmNDR1-1), RPM1-INTERACTING PROTEIN 4 (GmRIN4-4), and the secreted xyloglucan endotransglycosylase/hydrolase 43 (GmXTH43) in GmCCA1-1-OE and GmCCA1-1-RNAi roots, compared to controls, reveal a significant role of GmCCA1-1 expression in roots undergoing defense to H. glycines parasitism. The observation that GmCCA1-1 regulates GmXTH43 expression links the central circadian oscillator to the functionality of the secretion system.


Assuntos
Relógios Circadianos , Tylenchoidea , Animais , Parede Celular , Relógios Circadianos/genética , Doenças das Plantas/genética , Raízes de Plantas/genética , Glycine max/metabolismo , Tylenchoidea/genética
16.
Front Plant Sci ; 10: 233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863422

RESUMO

In Arabidopsis, the circadian rhythm is associated with multiple important biological processes and maintained by multiple interconnected loops that generate robust rhythms. The circadian clock central loop is a negative feedback loop composed of the core circadian clock components. TOC1 (TIMING OF CAB EXPRESSION 1) is highly expressed in the evening and negatively regulates the expression of CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL). CCA1/LHY also binds to the promoter of TOC1 and represses the TOC1 expression. Our recent research revealed that the histone modification complex comprising of LYSINE-SPECIFIC DEMETHYLASE 1 (LSD1)-LIKE 1/2 (LDL1/2) and HISTONE DEACETYLASE 6 (HDA6) can be recruited by CCA1/LHY to repress TOC1 expression. In this study, we found that HDA6, LDL1, and LDL2 can interact with TOC1, and the LDL1/2-HDA6 complex is associate with TOC1 to repress the CCA1/LHY expression. Furthermore, LDL1/2-HDA6 and TOC1 co-target a subset of genes involved in the circadian rhythm. Collectively, our results indicate that the LDL1/2-HDA6 histone modification complex is important for the regulation of the core circadian clock components.

17.
Curr Biol ; 28(4): 630-639.e4, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29398214

RESUMO

The circadian clock drives daily rhythms of many plant physiological responses, providing a competitive advantage that improves plant fitness and survival rates [1-5]. Whereas multiple environmental cues are predicted to regulate the plant clock function, most studies focused on understanding the effects of light and temperature [5-8]. Increasing evidence indicates a significant role of plant-pathogen interactions on clock regulation [9, 10], but the underlying mechanisms remain elusive. In Arabidopsis, the clock function largely relies on a transcriptional feedback loop between morning (CCA1 and LHY)- and evening (TOC1)-expressed transcription factors [6-8]. Here, we focused on these core components to investigate the Arabidopsis clock regulation using a unique biotic stress approach. We found that a single-leaf Pseudomonas syringae infection systemically lengthened the period and reduced the amplitude of circadian rhythms in distal uninfected tissues. Remarkably, the low-amplitude phenotype observed upon infection was recapitulated by a transient treatment with the defense-related phytohormone salicylic acid (SA), which also triggered a significant clock phase delay. Strikingly, despite SA-modulated circadian rhythms, we revealed that the master regulator of SA signaling, NPR1 [11, 12], antagonized clock responses triggered by both SA treatment and P. syringae. In contrast, we uncovered that the NADPH oxidase RBOHD [13] largely mediated the aforementioned clock responses after either SA treatment or the bacterial infection. Altogether, we demonstrated novel and unexpected roles for SA, NPR1, and redox signaling in clock regulation by P. syringae and revealed a previously unrecognized layer of systemic clock regulation by locally perceived environmental cues.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas , Pseudomonas syringae/fisiologia , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Fatores de Transcrição/metabolismo
18.
Curr Biol ; 28(2): 311-318.e5, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29337078

RESUMO

Plants coordinate their growth and development with the environment through integration of circadian clock and photosensory pathways. In Arabidopsis thaliana, rhythmic hypocotyl elongation in short days (SD) is enhanced at dawn by the basic-helix-loop-helix (bHLH) transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) directly inducing expression of growth-related genes [1-6]. PIFs accumulate progressively during the night and are targeted for degradation by active phytochromes in the light, when growth is reduced. Although PIF proteins are also detected during the day hours [7-10], their growth-promoting activity is inhibited through unknown mechanisms. Recently, the core clock components and transcriptional repressors PSEUDO-RESPONSE REGULATORS PRR9/7/5 [11, 12], negative regulators of hypocotyl elongation [13, 14], were described to associate to G boxes [15], the DNA motifs recognized by the PIFs [16, 17], suggesting that PRR and PIF function might converge antagonistically to regulate growth. Here we report that PRR9/7/5 and PIFs physically interact and bind to the same promoter region of pre-dawn-phased, growth-related genes, and we identify the transcription factor CDF5 [18, 19] as target of this interplay. In SD, CDF5 expression is sequentially repressed from morning to dusk by PRRs and induced pre-dawn by PIFs. Consequently, CDF5 accumulates specifically at dawn, when it induces cell elongation. Our findings provide a framework for recent TIMING OF CAB EXPRESSION 1 (TOC1/PRR1) data [5, 20] and reveal that the long described circadian morning-to-midnight waves of the PRR transcriptional repressors (PRR9, PRR7, PRR5, and TOC1) [21] jointly gate PIF activity to dawn to prevent overgrowth through sequential regulation of common PIF-PRR target genes such as CDF5.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Relógios Circadianos/genética , Fotoperíodo , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
19.
F1000Res ; 6: 951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690840

RESUMO

Circadian clocks are molecular timekeepers that synchronise internal physiological processes with the external environment by integrating light and temperature stimuli. As in other eukaryotic organisms, circadian rhythms in plants are largely generated by an array of nuclear transcriptional regulators and associated co-regulators that are arranged into a series of interconnected molecular loops. These transcriptional regulators recruit chromatin-modifying enzymes that adjust the structure of the nucleosome to promote or inhibit DNA accessibility and thus guide transcription rates. In this review, we discuss the recent advances made in understanding the architecture of the Arabidopsis oscillator and the chromatin dynamics that regulate the generation of rhythmic patterns of gene expression within the circadian clock.

20.
Plant Signal Behav ; 10(6): e1010933, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176897

RESUMO

Tissue-specific functions of the circadian clock in Arabidopsis have recently been revealed. The vasculature clock shows distinctive gene expression profiles compared to the clock in other tissues under light-dark cycles. However, it has not yet been established whether the vasculature clock also shows unique gene expression patterns that correlate with temperature cycles, another important environmental cue. Here, we detected diel phase of TIMING OF CAB EXPRESSION 1 (TOC1) expression in the vasculature and whole leaf under long-day light-dark cycles and temperature cycles. We found that the vasculature clock had advanced TOC1 phase under light-dark cycles but not under temperature cycles, suggesting that the vasculature clock has lower sensitivity against temperature signals. Furthermore, the phase advancement of TOC1 was seen only under long-day condition but not under short-day condition. These results support our previous conclusion that the circadian clock in vasculature preferentially senses photoperiodic signals.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Especificidade de Órgãos , Fotoperíodo , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/fisiologia , Temperatura , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA