Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.878
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 289-316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38277691

RESUMO

The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.


Assuntos
Mucosa Intestinal , Linfócitos Intraepiteliais , Humanos , Animais , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Homeostase , Receptores de Antígenos de Linfócitos T/metabolismo , Intestinos/imunologia
2.
Annu Rev Immunol ; 42(1): 427-53, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360547

RESUMO

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.


Assuntos
Proteína AIRE , Autoimunidade , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Timo/imunologia , Timo/metabolismo , Mutação , Tolerância Imunológica , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo
3.
Annu Rev Immunol ; 39: 19-49, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33428454

RESUMO

Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Animais , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Condicionamento Pré-Transplante , Transplante Homólogo
4.
Annu Rev Immunol ; 37: 377-403, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026410

RESUMO

The gut-associated lymphoid tissue (GALT) faces a considerable challenge. It encounters antigens derived from an estimated 1014 commensal microbes and greater than 30 kg of food proteins yearly. It must distinguish these harmless antigens from potential pathogens and mount the appropriate host immune response. Local and systemic hyporesponsiveness to dietary antigens, classically referred to as oral tolerance, comprises a distinct complement of adaptive cellular and humoral immune responses. It is increasingly evident that a functional epithelial barrier engaged in intimate interplay with innate immune cells and the resident microbiota is critical to establishing and maintaining oral tolerance. Moreover, innate immune cells serve as a bridge between the microbiota, epithelium, and the adaptive immune system, parlaying tonic microbial stimulation into signals critical for mucosal homeostasis. Dysregulation of gut homeostasis and the subsequent disruption of tolerance therefore have clinically significant consequences for the development of food allergy.


Assuntos
Disbiose/imunologia , Hipersensibilidade Alimentar/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Administração Oral , Alérgenos/imunologia , Animais , Alimentos , Hipersensibilidade Alimentar/microbiologia , Homeostase , Humanos , Tolerância Imunológica , Imunidade Inata , Mucosa Intestinal/microbiologia
5.
Annu Rev Immunol ; 37: 405-437, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673535

RESUMO

Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.


Assuntos
Resistência à Doença/imunologia , Imunidade Inata , Infecções/imunologia , Microbiota/imunologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Tolerância Imunológica , Imunomodulação
6.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026411

RESUMO

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Animais , Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Homeostase , Humanos , Tolerância Imunológica , Imunomodulação , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia
7.
Annu Rev Immunol ; 36: 247-277, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29328785

RESUMO

The liver is a key, frontline immune tissue. Ideally positioned to detect pathogens entering the body via the gut, the liver appears designed to detect, capture, and clear bacteria, viruses, and macromolecules. Containing the largest collection of phagocytic cells in the body, this organ is an important barrier between us and the outside world. Importantly, as portal blood also transports a large number of foreign but harmless molecules (e.g., food antigens), the liver's default immune status is anti-inflammatory or immunotolerant; however, under appropriate conditions, the liver is able to mount a rapid and robust immune response. This balance between immunity and tolerance is essential to liver function. Excessive inflammation in the absence of infection leads to sterile liver injury, tissue damage, and remodeling; insufficient immunity allows for chronic infection and cancer. Dynamic interactions between the numerous populations of immune cells in the liver are key to maintaining this balance and overall tissue health.


Assuntos
Fenômenos do Sistema Imunitário , Fígado/imunologia , Fígado/metabolismo , Imunidade Adaptativa , Animais , Hepatite Viral Humana/imunologia , Hepatite Viral Humana/metabolismo , Hepatite Viral Humana/virologia , Humanos , Tolerância Imunológica , Imunidade Inata , Fígado/irrigação sanguínea , Fígado/citologia , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia
8.
Annu Rev Immunol ; 36: 339-357, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29356584

RESUMO

Maintenance of immunological self-tolerance requires lymphocytes carrying self-reactive antigen receptors to be selectively prevented from mounting destructive or inflammatory effector responses. Classically, self-tolerance is viewed in terms of the removal, editing, or silencing of B and T cells that have formed self-reactive antigen receptors during their early development. However, B cells activated by foreign antigen can enter germinal centers (GCs), where they further modify their antigen receptor by somatic hypermutation (SHM) of their immunoglobulin genes. The inevitable emergence of activated, self-reactive GC B cells presents a unique challenge to the maintenance of self-tolerance that must be rapidly countered to avoid autoantibody production. Here we discuss current knowledge of the mechanisms that enforce B cell self-tolerance, with particular focus on the control of self-reactive GC B cells. We also consider how self-reactive GC B cells can escape self-tolerance to initiate autoantibody production or instead be redeemed via SHM and used in productive antibody responses.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Centro Germinativo/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/metabolismo , Centro Germinativo/metabolismo , Humanos , Tolerância Imunológica , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Annu Rev Immunol ; 35: 85-118, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226225

RESUMO

Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.


Assuntos
Células Epiteliais/metabolismo , Linfócitos T/fisiologia , Timo/patologia , Animais , Autoimunidade , Diferenciação Celular , Células Epiteliais/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Timo/imunologia , Fatores de Transcrição/metabolismo , Proteína AIRE
10.
Cell ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276775

RESUMO

Major histocompatibility complex class II (MHC-II) is the most significant genetic risk factor for systemic lupus erythematosus (SLE), but the nature of the self-antigens that trigger autoimmunity remains unclear. Unusual self-antigens, termed neoself-antigens, are presented on MHC-II in the absence of the invariant chain essential for peptide presentation. Here, we demonstrate that neoself-antigens are the primary target for autoreactive T cells clonally expanded in SLE. When neoself-antigen presentation was induced by deleting the invariant chain in adult mice, neoself-reactive T cells were clonally expanded, leading to the development of lupus-like disease. Furthermore, we found that neoself-reactive CD4+ T cells were significantly expanded in SLE patients. A high frequency of Epstein-Barr virus reactivation is a risk factor for SLE. Neoself-reactive lupus T cells were activated by Epstein-Barr-virus-reactivated cells through downregulation of the invariant chain. Together, our findings imply that neoself-antigen presentation by MHC-II plays a crucial role in the pathogenesis of SLE.

11.
Cell ; 187(17): 4713-4732.e19, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38968937

RESUMO

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.


Assuntos
Tolerância Imunológica , Progesterona , Progestinas , Inibidor 1 da Ativação de Células T com Domínio V-Set , Animais , Feminino , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Humanos , Camundongos , Gravidez , Progestinas/farmacologia , Progestinas/metabolismo , Progesterona/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placenta/imunologia
12.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37327784

RESUMO

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Assuntos
Gasderminas , Proteínas de Neoplasias , Camundongos , Animais , Caspase 3/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Intestino Delgado/metabolismo , Tolerância Imunológica
13.
Cell ; 185(14): 2542-2558.e18, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714609

RESUMO

Medullary thymic epithelial cells (mTECs) ectopically express thousands of peripheral-tissue antigens (PTAs), which drive deletion or phenotypic diversion of self-reactive immature T cells during thymic differentiation. Failure of PTA expression causes multiorgan autoimmunity. By assaying chromatin accessibility in individual mTECs, we uncovered signatures of lineage-defining transcription factors (TFs) for skin, lung, liver, and intestinal cells-including Grhl, FoxA, FoxJ1, Hnf4, Sox8, and SpiB-in distinct mTEC subtypes. Transcriptomic and histologic analyses showed that these subtypes, which we collectively term mimetic cells, expressed PTAs in a biologically logical fashion, mirroring extra-thymic cell types while maintaining mTEC identity. Lineage-defining TFs bound to mimetic-cell open chromatin regions and were required for mimetic cell accumulation, whereas the tolerogenic factor Aire was partially and variably required. Expression of a model antigen in mimetic cells sufficed to induce cognate T cell tolerance. Thus, mTECs co-opt lineage-defining TFs to drive mimetic cell accumulation, PTA expression, and self-tolerance.


Assuntos
Células Epiteliais , Linfócitos T , Animais , Antígenos , Diferenciação Celular , Cromatina/metabolismo , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Cell ; 185(11): 1924-1942.e23, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35525247

RESUMO

For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.


Assuntos
Linfonodos , Melanoma , Animais , Tolerância Imunológica , Imunoterapia , Metástase Linfática/patologia , Melanoma/patologia , Camundongos
15.
Cell ; 184(15): 3998-4015.e19, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157302

RESUMO

Foxp3+ T regulatory (Treg) cells promote immunological tumor tolerance, but how their immune-suppressive function is regulated in the tumor microenvironment (TME) remains unknown. Here, we used intravital microscopy to characterize the cellular interactions that provide tumor-infiltrating Treg cells with critical activation signals. We found that the polyclonal Treg cell repertoire is pre-enriched to recognize antigens presented by tumor-associated conventional dendritic cells (cDCs). Unstable cDC contacts sufficed to sustain Treg cell function, whereas T helper cells were activated during stable interactions. Contact instability resulted from CTLA-4-dependent downregulation of co-stimulatory B7-family proteins on cDCs, mediated by Treg cells themselves. CTLA-4-blockade triggered CD28-dependent Treg cell hyper-proliferation in the TME, and concomitant Treg cell inactivation was required to achieve tumor rejection. Therefore, Treg cells self-regulate through a CTLA-4- and CD28-dependent feedback loop that adjusts their population size to the amount of local co-stimulation. Its disruption through CTLA-4-blockade may off-set therapeutic benefits in cancer patients.


Assuntos
Antígeno CTLA-4/metabolismo , Retroalimentação Fisiológica , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD28/metabolismo , Proliferação de Células , Células Dendríticas/imunologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Interleucina-2/metabolismo , Ligantes , Linfonodos/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Microambiente Tumoral
16.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32380006

RESUMO

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia
17.
Cell ; 180(4): 688-702.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084340

RESUMO

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Aprendizado de Máquina , Tiadiazóis/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/química , Quimioinformática/métodos , Clostridioides difficile/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tiadiazóis/química
18.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610084

RESUMO

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Assuntos
Tecido Adiposo Marrom/metabolismo , Interleucina-6/metabolismo , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Encéfalo/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Gluconeogênese , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Interleucina-6/sangue , Interleucina-6/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Interleucina-6/metabolismo , Proteína Desacopladora 1/deficiência , Proteína Desacopladora 1/genética
19.
Cell ; 182(5): 1125-1139.e18, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32822574

RESUMO

Maternal decidual NK (dNK) cells promote placentation, but how they protect against placental infection while maintaining fetal tolerance is unclear. Here we show that human dNK cells highly express the antimicrobial peptide granulysin (GNLY) and selectively transfer it via nanotubes to extravillous trophoblasts to kill intracellular Listeria monocytogenes (Lm) without killing the trophoblast. Transfer of GNLY, but not other cell death-inducing cytotoxic granule proteins, strongly inhibits Lm in human placental cultures and in mouse and human trophoblast cell lines. Placental and fetal Lm loads are lower and pregnancy success is greatly improved in pregnant Lm-infected GNLY-transgenic mice than in wild-type mice that lack GNLY. This immune defense is not restricted to pregnancy; peripheral NK (pNK) cells also transfer GNLY to kill bacteria in macrophages and dendritic cells without killing the host cell. Nanotube transfer of GNLY allows dNK to protect against infection while leaving the maternal-fetal barrier intact.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Bactérias/imunologia , Movimento Celular/imunologia , Células Matadoras Naturais/imunologia , Trofoblastos/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Células HeLa , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placenta/imunologia , Placenta/microbiologia , Gravidez , Ratos , Células THP-1 , Trofoblastos/microbiologia
20.
Cell ; 178(5): 1231-1244.e11, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31402172

RESUMO

Growth and differentiation factor 15 (GDF15) is an inflammation-associated hormone with poorly defined biology. Here, we investigated the role of GDF15 in bacterial and viral infections. We found that inflammation induced GDF15, and that GDF15 was necessary for surviving both bacterial and viral infections, as well as sepsis. The protective effects of GDF15 were largely independent of pathogen control or the magnitude of inflammatory response, suggesting a role in disease tolerance. Indeed, we found that GDF15 was required for hepatic sympathetic outflow and triglyceride metabolism. Failure to defend the lower limit of plasma triglyceride levels was associated with impaired cardiac function and maintenance of body temperature, effects that could be rescued by exogenous administration of lipids. Together, we show that GDF15 coordinates tolerance to inflammatory damage through regulation of triglyceride metabolism.


Assuntos
Fator 15 de Diferenciação de Crescimento/metabolismo , Fígado/metabolismo , Sepse/patologia , Animais , Anticorpos/farmacologia , Modelos Animais de Doenças , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/imunologia , Coração/efeitos dos fármacos , Coração/virologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Orthomyxoviridae/patogenicidade , Poli I-C/toxicidade , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Sepse/sangue , Sepse/mortalidade , Taxa de Sobrevida , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Troponina I/sangue , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA