Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 450, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890952

RESUMO

BACKGROUND: It is well known that development of prostate cancer (PC) can be attributed to somatic mutations of the genome, acquired within proto-oncogenes or tumor-suppressor genes. What is less well understood is how germline variation contributes to disease aggressiveness in PC patients. To map germline modifiers of aggressive neuroendocrine PC, we generated a genetically diverse F2 intercross population using the transgenic TRAMP mouse model and the wild-derived WSB/EiJ (WSB) strain. The relevance of germline modifiers of aggressive PC identified in these mice was extensively correlated in human PC datasets and functionally validated in cell lines. RESULTS: Aggressive PC traits were quantified in a population of 30 week old (TRAMP x WSB) F2 mice (n = 307). Correlation of germline genotype with aggressive disease phenotype revealed seven modifier loci that were significantly associated with aggressive disease. RNA-seq were analyzed using cis-eQTL and trait correlation analyses to identify candidate genes within each of these loci. Analysis of 92 (TRAMP x WSB) F2 prostates revealed 25 candidate genes that harbored both a significant cis-eQTL and mRNA expression correlations with an aggressive PC trait. We further delineated these candidate genes based on their clinical relevance, by interrogating human PC GWAS and PC tumor gene expression datasets. We identified four genes (CCDC115, DNAJC10, RNF149, and STYXL1), which encompassed all of the following characteristics: 1) one or more germline variants associated with aggressive PC traits; 2) differential mRNA levels associated with aggressive PC traits; and 3) differential mRNA expression between normal and tumor tissue. Functional validation studies of these four genes using the human LNCaP prostate adenocarcinoma cell line revealed ectopic overexpression of CCDC115 can significantly impede cell growth in vitro and tumor growth in vivo. Furthermore, CCDC115 human prostate tumor expression was associated with better survival outcomes. CONCLUSION: We have demonstrated how modifier locus mapping in mouse models of PC, coupled with in silico analyses of human PC datasets, can reveal novel germline modifier genes of aggressive PC. We have also characterized CCDC115 as being associated with less aggressive PC in humans, placing it as a potential prognostic marker of aggressive PC.


Assuntos
Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/genética , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Genes Neoplásicos , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Carga Tumoral
2.
Curr Dev Nutr ; 2(3): nzy002, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30019025

RESUMO

BACKGROUND: Cruciferous vegetables have been associated with the chemoprevention of cancer. Epigenetic regulators have been identified as important targets for prostate cancer chemoprevention. Treatment of human prostate cancer cells with sulforaphane (SFN), a chemical from broccoli and broccoli sprouts, inhibits epigenetic regulators such as histone deacetylase (HDAC) enzymes, but it is not known whether consumption of a diet high in broccoli sprouts impacts epigenetic mechanisms in an in vivo model of prostate cancer. OBJECTIVE: In the transgenic adenocarcinoma of the mouse prostate (TRAMP) model, we tested the hypothesis that a broccoli sprout diet suppresses prostate cancer, inhibits HDAC expression, alters histone modifications, and changes the expression of genes regulated by HDACs. METHODS: TRAMP mice were fed a 15% broccoli sprout or control AIN93G diet; tissue samples were collected at 12 and 28 wk of age. RESULTS: Mice fed broccoli sprouts had detectable amounts of SFN metabolites in liver, kidney, colon, and prostate tissues. Broccoli sprouts reduced prostate cancer incidence and progression to invasive cancer by 11- and 2.4-fold at 12 and 28 wk of age, respectively. There was a significant decline in HDAC3 protein expression in the epithelial cells of prostate ventral and anterior lobes at age 12 wk. Broccoli sprout consumption also decreased histone H3 lysine 9 trimethylation in the ventral lobe (age 12 wk), and decreased histone H3 lysine 18 acetylation in all prostate lobes (age 28 wk). A decline in p16 mRNA levels, a gene regulated by HDAC3, was associated with broccoli sprout consumption, but no significant changes were noted at the protein level. CONCLUSIONS: Broccoli sprout intake was associated with a decline in prostate cancer occurrence and HDAC3 protein expression in the prostate, extending prior work that implicated loss of HDAC3/ corepressor interactions as a key preventive mechanism by SFN in vivo.

3.
Cell Syst ; 4(1): 31-45.e6, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27916600

RESUMO

It is unclear how standing genetic variation affects the prognosis of prostate cancer patients. To provide one controlled answer to this problem, we crossed a dominant, penetrant mouse model of prostate cancer to Diversity Outbred mice, a collection of animals that carries over 40 million SNPs. Integration of disease phenotype and SNP variation data in 493 F1 males identified a metastasis modifier locus on Chromosome 8 (LOD = 8.42); further analysis identified the genes Rwdd4, Cenpu, and Casp3 as functional effectors of this locus. Accordingly, analysis of over 5,300 prostate cancer patient samples revealed correlations between the presence of genetic variants at these loci, their expression levels, cancer aggressiveness, and patient survival. We also observed that ectopic overexpression of RWDD4 and CENPU increased the aggressiveness of two human prostate cancer cell lines. In aggregate, our approach demonstrates how well-characterized genetic variation in mice can be harnessed in conjunction with systems genetics approaches to identify and characterize germline modifiers of human disease processes.


Assuntos
Mapeamento Cromossômico/métodos , Neoplasias da Próstata/genética , Animais , Caspase 3/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Camundongos de Cruzamento Colaborativo/genética , Modelos Animais de Doenças , Genética Populacional/métodos , Estudo de Associação Genômica Ampla , Células Germinativas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Camundongos , Herança Multifatorial/genética , Metástase Neoplásica/genética , Processos Neoplásicos , Fenótipo , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/metabolismo , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA