Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
EMBO J ; 41(14): e109777, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670107

RESUMO

Autophagy represents a fundamental mechanism for maintaining cell survival and tissue homeostasis in response to physiological and pathological stress. Autophagy initiation converges on the FIP200-ATG13-ULK1 complex wherein the serine/threonine kinase ULK1 plays a central role. Here, we reveal that the E3 ubiquitin ligase TRIM27 functions as a negative regulatory component of the FIP200-ATG13-ULK1 complex. TRIM27 directly polyubiquitinates ULK1 at K568 and K571 sites with K48-linked ubiquitin chains, with proteasomal turnover maintaining control over basal ULK1 levels. However, during starvation-induced autophagy, TRIM27 catalyzes non-degradative K6- and K11-linked ubiquitination of the serine/threonine kinase 38-like (STK38L) kinase. In turn, STK38L ubiquitination promotes its activation and phosphorylation of ULK1 at Ser495, rendering ULK1 in a permissive state for TRIM27-mediated hyper-ubiquitination of ULK1. This cooperative mechanism serves to restrain the amplitude and duration of autophagy. Further evidence from mouse models shows that basal autophagy levels are increased in Trim27 knockout mice and that Trim27 differentially regulates tumorigenesis and metastasis. Our study identifies a key role of STK38L-TRIM27-ULK1 signaling axis in negatively controlling autophagy with relevance established in human breast cancer.


Assuntos
Autofagia , Proteínas Serina-Treonina Quinases , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Carcinogênese/genética , Proteínas de Ligação a DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/genética , Serina , Fatores de Transcrição , Ubiquitina-Proteína Ligases
2.
Proc Natl Acad Sci U S A ; 120(25): e2300310120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307465

RESUMO

The protein kinase WNK1 (with-no-lysine 1) influences trafficking of ion and small-molecule transporters and other membrane proteins as well as actin polymerization state. We investigated the possibility that actions of WNK1 on both processes are related. Strikingly, we identified the E3 ligase tripartite motif-containing 27 (TRIM27) as a binding partner for WNK1. TRIM27 is involved in fine tuning the WASH (Wiskott-Aldrich syndrome protein and SCAR homologue) regulatory complex which regulates endosomal actin polymerization. Knockdown of WNK1 reduced the formation of the complex between TRIM27 and its deubiquitinating enzyme USP7 (ubiquitin-specific protease 7), resulting in significantly diminished TRIM27 protein. Loss of WNK1 disrupted WASH ubiquitination and endosomal actin polymerization, which are necessary for endosomal trafficking. Sustained receptor tyrosine kinase (RTK) expression has long been recognized as a key oncogenic signal for the development and growth of human malignancies. Depletion of either WNK1 or TRIM27 significantly increased degradation of the epidermal growth factor receptor (EGFR) following ligand stimulation in breast and lung cancer cells. Like the EGFR, the RTK AXL was also affected similarly by WNK1 depletion but not by inhibition of WNK1 kinase activity. This study uncovers a mechanistic connection between WNK1 and the TRIM27-USP7 axis and extends our fundamental knowledge about the endocytic pathway regulating cell surface receptors.


Assuntos
Actinas , Endossomos , Humanos , Peptidase 7 Específica de Ubiquitina , Fatores de Transcrição , Receptores ErbB , Receptores Proteína Tirosina Quinases , Proteínas de Ligação a DNA , Proteínas Nucleares , Proteína Quinase 1 Deficiente de Lisina WNK
3.
Drug Resist Updat ; 76: 101096, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924996

RESUMO

Krüppel-like factor 12 (KLF12) has been characterized as a transcriptional repressor, and previous studies have unveiled its roles in angiogenesis, neural tube defect, and natural killer (NK) cell proliferation. However, the contribution of KLF12 to cancer treatment remains undefined. Here, we show that KLF12 is downregulated in various cancer types, and KLF12 downregulation promotes cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma (ESCC). Mechanistically, KLF12 binds to the promoters of L1 Cell Adhesion Molecule (L1CAM) and represses its expression. Depletion of L1CAM abrogates cisplatin resistance and cancer metastasis caused by KLF12 loss. Moreover, the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) binds to the N-terminal region of KLF12 and ubiquitinates KLF12 at K326 via K33-linked polyubiquitination. Notably, TRIM27 depletion enhances the transcriptional activity of KLF12 and consequently inhibits L1CAM expression. Overall, our study elucidated a novel regulatory mechanism involving TRIM27, KLF12 and L1CAM, which plays a substantial role in cisplatin resistance and cancer metastasis in ESCC. Targeting these genes could be a promising approach for ESCC treatment.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Molécula L1 de Adesão de Célula Nervosa , Humanos , Cisplatino/farmacologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metástase Neoplásica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Proteínas com Motivo Tripartido , Proteínas de Ligação a DNA , Proteínas Nucleares
4.
J Cell Mol Med ; 28(3): e18085, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38146129

RESUMO

Interleukin-6 (IL-6) is a cytokine generated by healthy constituents of the skin, but is also up-regulated by a wide range of skin lesions and inflammatory conditions to trigger cytopathy of skin cells. TRIM27 was identified to contribute to the functional effects of IL-6 on skin cells. However, the underlying mechanism was not clear. Lentivirus infection was used for gene overexpression or silencing. RT-PCR and Western blot were used to respectively assess mRNA and protein levels. Cell viability was assessed by CCK-8 assay. Extracellular flux analysis was used to assess the levels of oxygen consumption rate and extracellular acidification rate. Mouse back skin was treated with imiquimod to produce psoriasis-like inflammation in vivo. Histological assessment and immunohistochemistry staining were respectively applied to analyse lesioned mouse and human skin samples. IL-6-induced increased viability, glycolysis and inflammation in keratinocytes was inhibited both by a chemical methylation inhibitor and by METTL14 knockdown. Further investigation found that METTL14 induces m6A methylation of TRIM27, which is recognized by a m6A reader, IGF2BP2. Elevation of TRIM27 level and activation of IL-6/STAT3 signalling pathway were found in an in vivo psoriasis-like inflammation model, whereas inhibition m6A methylation strongly alleviated the inflammation. Finally, METTL14, TRIM27, STAT3, p-STAT3 and IL-6 expressions were all found to be increased in clinical skin samples of psoriatic patients. Our results unravelled METTL14/TRIM27/IGF2BP2 signalling axis in keratinocyte cytopathy, which plays a critical role in facilitating the activation of IL-6/STAT3 signalling pathway. Our findings should provide inspirations for the design of new therapeutics for skin inflammatory diseases including psoriasis.


Assuntos
Adenina , Interleucina-6 , Metiltransferases , Psoríase , Animais , Humanos , Camundongos , Adenina/análogos & derivados , Proteínas de Ligação a DNA , Glicólise , Células HaCaT , Inflamação/patologia , Interleucina-6/farmacologia , Queratinócitos/patologia , Proteínas Nucleares , Psoríase/patologia , Proteínas de Ligação a RNA , Fatores de Transcrição , Proteínas com Motivo Tripartido
5.
Cancer Sci ; 114(2): 533-545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36380570

RESUMO

Tuftelin (TUFT1) is highly expressed in various tumor types and promotes tumor growth and metastasis by activating AKT and other core signaling pathways. However, the effects of post-translational modifications of TUFT1 on its oncogenic function remain unexplored. In this study, we found that TUFT1 was SUMOylated at K79. SUMOylation deficiency significantly impaired the ability of TUFT1 to promote the proliferation, migration, and invasion of gastric cancer (GC) cells by blocking AKT/mTOR signaling pathway activation. SUMOylation of TUFT1 is mediated by the E3 SUMO ligase tripartite motif-containing protein 27 (TRIM27), and these two proteins regulate the malignant behavior of GC cells and AKT activation in the same pathway. TUFT1 binds to TRIM27 through its N-terminus, and decreased binding affinity of TUFT1 to TRIM27 significantly impairs its oncogenic effect. In addition, data collected from GC clinical samples indicated that the combined detection of TUFT1 and TRIM27 expression reflected tumor malignancy and patient survival with higher precision. In addition, we proved that SUMOylated TUFT1 is not only an upstream signal for AKT activation but also directly activates mTOR by forming a complex with Rab GTPase activating protein 1, which further inhibits Rab GTPases and promotes the perinuclear accumulation of mTORC1. Altogether, these data indicate that SUMOylated TUFT1 is the active form that affects GC progression through the AKT/mTOR signaling pathway and might be a promising therapeutic target or biomarker for GC progression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sumoilação , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular
6.
Inflamm Res ; 71(10-11): 1315-1325, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35962797

RESUMO

BACKGROUND: Sepsis is a global fatal disease and leads to severe lung injury due to dysfunction of inflammation response. TRIM27 is closely related to the diseased with dysfunction of inflammation response. The aim of this study was to clarify the role and mechanism of TRIM27 in sepsis-induced lung injury. METHODS: The lipopolysaccharide (LPS)-induced septic mouse model was successfully established. The lung injury was evaluated by lung wet/dry (W/D) ratio and hematoxylin-eosin (H&E) staining. The cell apoptosis was evaluated by TUNEL assay. The inflammatory cytokines were measured by quantitative real time-PCR (qRT-PCR) assay and commercial enzyme-linked immunosorbent assay (ELISA). The oxidative stress was assessed by the contents of superoxide dismutase (SOD) and malondialdehyde (MDA), and the expression of dihydroethidium (DHE). RESULTS: In this study, we demonstrated that TRIM27 was up-regulated in LPS-induced septic mice. In loss-of-function experiments, knockdown of TRIM27 alleviated sepsis-induced lung injury, inflammation, apoptosis, and oxidative stress. More importantly, knockdown of TRIM27 was observed to reduce p-p65/NOX4 expression via suppressing ubiquitination of PPARγ. In rescue experiments, overexpression of NOX4 abolished the effect of sh-TRIM27 on alleviating sepsis-induced inflammation, apoptosis, and oxidative stress. CONCLUSION: These findings highlighted that knockdown of TRIM27 alleviated sepsis-induced inflammation, oxidative stress and apoptosis via suppressing ubiquitination of PPARγ and reducing NOX4 expression, which supports the potential utility of TRIM27 as a therapeutic target in septic lung injury.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Sepse/complicações , Sepse/genética , Apoptose , Lesão Pulmonar Aguda/tratamento farmacológico , Ubiquitinação , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/farmacologia , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases
7.
Exp Cell Res ; 400(1): 112437, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385414

RESUMO

Neurotoxicity induced by glutamate (Glu) is often used to study the signaling mechanism of neurological disorders. The identification of specific genetic factors that cause Glu-induced neurotoxicity provides evidence for the common pathways of neuronal apoptosis and inflammation. TRIM27 has been found to induce apoptosis and inflammation. Nevertheless, there is little evidence that TRIM27 is associated with Glu-induced neurotoxicity. We found that TRIM27 expression was increased in epilepsy patients and in HT22 cells following Glu treatment. Glu-mediated cell apoptosis, decreased PPARγ expression, and increased levels of cleaved Caspase-3 and IL-1ß expression in HT22 cells were significantly inhibited by TRIM27 knockdown. TRIM27 overexpression significantly induced cell apoptosis and expression of cleaved Caspase-3 and IL-1ß, but inhibited PPARγ expression in HT22 cells, which were reversed by ROZ, suggesting the involvement of PPARγ in TRIM27-mediated cell apoptosis and inflammation in HT22 cells. Mechanically, TRIM27 ubiquitinates and degrades PPARγ, following induces cleaved Caspase-3 and IL-1ß expression. Clinically, increased expression of TRIM27 in epilepsy patients was associated with decreased PPARγ expression. Taken together, our study suggests that TRIM27-mediated ubiquitination of PPARγ promotes Glu-induced HT22 cell apoptosis and IL-1ß release.


Assuntos
Apoptose , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Epilepsia/patologia , Ácido Glutâmico/efeitos adversos , Inflamação/patologia , Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Epilepsia/induzido quimicamente , Epilepsia/imunologia , Epilepsia/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Proteínas Nucleares/genética , PPAR gama/genética , Ubiquitinação
8.
Allergol Immunopathol (Madr) ; 50(2): 33-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35257543

RESUMO

BACKGROUND: Pneumonia widely occurs in children and has high global morbidity and mortality. There is an urgent requirement to clarify the underlying mechanism of pediatric pneumonia and definite its potential therapeutic targets. Tri-domain protein 27 (TRIM27) is one of the TRIM protein family members which widely participated in multiple cellular processes. OBJECTIVE: To assess whether TRIM27 protects against pediatric pneumonia. METHODS: A lipopolysaccharide (LPS)-induced inflammation injury model was constructed. The level of TRIM27 in LPS-induced cells was examined. The effects of TRIM27 in cell apoptosis and inflammatory response was evaluated. Moreover, the involvement of TLR4/NF-κB pathway were detected by Immunoblot. RESULTS: We established a lipopolysaccharide (LPS)-induced inflammation injury model. Our data confirmed that LPS-treated WI-38 cells demonstrated a down-regulated expression of TRIM27. Overexpression of TRIM27 effectively reduced apoptosis and up-regulated the inflammatory factors in LPS-treated WI-38 cells. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway acted as a key point in LPS-mediated inflammation injuries, and overexpression of TRIM27 remarkably inhibited the activity of TLR4/NF-κB pathway, indicating the anti-inflammatory effect of TRIM27. CONCLUSION: In conclusion, TRIM27 protects WI-38 cells against LPS-induced inflammation injuries by inhibiting TLR4/NF-κB pathway.


Assuntos
NF-kappa B , Pneumonia , Criança , Proteínas de Ligação a DNA , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , NF-kappa B/metabolismo , Proteínas Nucleares , Pneumonia/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like
9.
Biochem Biophys Res Commun ; 557: 127-134, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33865220

RESUMO

Myocardial ischemia/reperfusion (MI/R) has high morbidity and mortality worldwide, but the underlying mechanisms have not been entirely understood. TRIM27 is one of the Tri-domain proteins (TRIM) family proteins with crucial roles in numerous life processes. In the study, we attempted to explore the effects of heart-conditional knockout of TRIM27 (TRIM27cKO) on MI/R progression both in vivo and in vitro. Our results showed that TRIM27 was strongly decreased in murine hearts with MI/R injury and in cardiomyocytes with hypoxic reoxygenation (HR) treatment. TRIM27cKO could further accelerate the infarction size and cardiac dysfunction in MI/R mice. Function study demonstrated that heart-selective TRIM27 deletion significantly aggravated apoptosis in hearts of MI/R mice through enhancing Caspase-3 activities. Moreover, inflammatory response due to MI/R injury was remarkably exacerbated in TRIM27cKO mice by strengthening nuclear factor κB (NF-κB) activation. In addition, p53 expression levels were dramatically up-regulated in hearts of MI/R mice and cardiomyocytes with HR treatment, which were further aggravated by TRIM27cKO. Intriguingly, we found that TRIM27 could interact with p53 and promote its ubquitination. Of note, suppressing p53 remarkably ameliorated TRIM27cKO-intensified apoptotic cell death and inflammation in HR-treated cardiomyocytes. Taken together, all these findings revealed that TRIM27/p53 axis may be involved in MI/R progression, and thus could be a therapeutic target for this disease treatment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inflamação/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , NF-kappa B/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
10.
BMC Cancer ; 21(1): 841, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284744

RESUMO

BACKGROUND: The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. METHODS: The mRNA levels of TRIM27 and Kaplan-Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. RESULTS: We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. CONCLUSIONS: Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Renais/genética , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , Proteínas Nucleares/metabolismo , Animais , Apoptose/fisiologia , Carcinoma de Células Renais/patologia , Proliferação de Células/fisiologia , Humanos , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Inibidor de NF-kappaB alfa/metabolismo
11.
FASEB J ; 34(5): 6271-6283, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162409

RESUMO

Vascular smooth muscle cells (VSMCs) in the normal arterial media continually express contractile phenotypic markers which are reduced dramatically in response to injury. Tripartite motif-containing proteins are a family of scaffold proteins shown to regulate gene silencing, cell growth, and differentiation. We here investigated the biological role of tripartite motif-containing 28 (TRIM28) and tripartite motif-containing 27 (TRIM27) in VSMCs. We observed that siRNA-mediated knockdown of TRIM28 and TRIM27 inhibited platelet-derived growth factor (PDGF)-induced migration in human VSMCs. Both TRIM28 and TRIM27 can regulate serum response element activity and were required for maintaining the contractile gene expression in human VSMCs. At the same time, TRIM28 and TRIM27 knockdown reduced the expression of PDGF receptor-ß (PDGFRß) and the phosphorylation of its downstream signaling components. Immunoprecipitation showed that TRIM28 formed complexes with TRIM27 through its N-terminal RING-B boxes-Coiled-Coil domain. Furthermore, TRIM28 and TRIM27 were shown to be upregulated and mediate the VSMC contractile marker gene and PDGFRß expression in differentiating human bone marrow mesenchymal stem cells. In conclusion, we identified that TRIM28 and TRIM27 cooperatively maintain the endogenous expression of PDGFRß and contractile phenotype of human VSMCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Contração Muscular , Músculo Liso Vascular/fisiologia , Proteínas Nucleares/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Músculo Liso Vascular/citologia , Proteínas Nucleares/genética , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Elemento de Resposta Sérica , Transdução de Sinais , Proteína 28 com Motivo Tripartido/genética
12.
Am J Physiol Cell Physiol ; 318(2): C272-C281, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747314

RESUMO

The IL-6/STAT3 signaling pathway is required for the development of psoriatic lesions, and tripartite motif-containing 27 (TRIM27) is a protein inhibitor of activated STAT3 (PIAS3)-interacting protein that could modulate IL-6-induced STAT3 activation. However, whether TRIM27 is associated with the IL-6/STAT3 signaling pathway in psoriasis remains enigmatic. TRIM27 expression and gene set enrichment analysis in patients with psoriasis were determined using bioinformatics. Human keratinocyte HaCaT cells treated with recombinant protein IL-6 (rh-IL-6) were transduced with lentivirus silencing TRIM27 and/or PIAS3 or, otherwise, transduced with lentivirus expressing TRIM27 and/or lentivirus silencing STAT3, or MG132, a proteasome-specific protease inhibitor. Cell proliferation and inflammation factor production were measured using Cell Counting Kit-8 and ELISA, respectively. TRIM27, proliferation marker protein Ki-67 (Ki67), phospho-STAT3 (p-STAT3), STAT3, and PIAS3 expressions were determined using real-time quantitative PCR, immunofluorescence staining, or Western blot analysis. Coimmunoprecipitation combined with ubiquitination analysis was performed to explore the interaction between TRIM27 and PIAS3. In the present study, TRIM27 expression was increased in psoriatic lesions, associated with the IL-6 signaling pathway, and induced by rh-IL-6 in a time-dependent manner. The increased cell proliferation, inflammation factor production, and expression of Ki67 and of p-STAT3 relative to STAT3 induced by rh-IL-6 and TRIM27 overexpression were significantly inhibited by TRIM27 silencing and STAT3 silencing, respectively. More importantly, TRIM27 interacted with PIAS3, and its overexpression promoted PIAS3 ubiquitination in HaCaT cells. PIAS3 silencing also significantly promoted TRIM27-dependent and IL6-induced STAT3 activation, cell proliferation, and inflammation factor production. In conclusion, our results highlight that TRIM27 expression is significantly increased by IL-6 and suggest a TRIM27/STAT3-dependent mechanism for regulation of inflammation and proliferation-associated development of psoriasis.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular , Humanos , Chaperonas Moleculares/metabolismo , Ubiquitinação/fisiologia
13.
J Cell Physiol ; 234(7): 11555-11566, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30648253

RESUMO

TRIM27 (tripartite motif-containing 27) is a member of the TRIM (tripartite motif) protein family and participates in a variety of biological processes. Some research has reported that TRIM27 was highly expressed in certain kinds of carcinoma cells and tissues and played an important role in the proliferation of carcinoma cells. However, whether TRIM27 takes part in the progression of lupus nephritis (LN) especially in cells proliferation remains unclear. Our study revealed that the overexpression of TRIM27 was observed in the kidneys of patients with LN, lupus mice and mesangial cells exposed to LN plasma which correlated with the proliferation of mesangial cells and ECM (extracellular matrix) deposition. Downregulation of TRIM27 expression suppressed the proliferation of mesangial cells and ECM accumulation in MRL/lpr mice and cultured human mesangial cells (HMCs) by regulating the FoxO1 pathway. Furthermore, the overexpression of FoxO1 remarkably decreased HMCs proliferation level and ECM accumulation in LN plasma-treated HMCs. In addition, the protein kinase B (Akt) signal pathway inhibitor LY294002 significantly reduced the expression of TRIM27 and inhibited the dysfunction of mesangial cells. These above data suggested that TRIM27 mediated abnormal mesangial cell proliferation in kidney of lupus and might be the potential target for treating mesangial cell proliferation of lupus nephritis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O1/metabolismo , Nefrite Lúpica/metabolismo , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Proteínas Nucleares/metabolismo , Adulto , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Feminino , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Cancer Cell Int ; 19: 283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31719796

RESUMO

BACKGROUND: Tripartite motif­containing 27 (TRIM27) belongs to the TRIM protein family, which is closely related to the progression of some certain human cancers. Nevertheless, the biological function of TRIM27 in esophageal squamous cell carcinoma (ESCC) is still not clear. The aim of present research is to examine the function of TRIM27 in ESCC cells. METHODS: In the present study, RNA interference (RNAi) and lentiviral vector were used to knockdown and overexpression of TRIM27 in ESCC cells respectively. qRT-PCR and western blot were used to examine the expression of TRIM27 in ESCC cells. Cell counting kit-8 (CCK-8) assay was performed to determine the proliferation of cells. RESULTS: Our analyses indicated that TRIM27 was a pro-proliferation factor in ESCC cells. Moreover, overexpression of TRIM27 deeply suppressed the apoptosis of ESCC cells and accelerated its glucose uptake. In addition, an AKT inhibitor LY294002 was used to determine the connection between TRIM27 and AKT in ESCC cells. Our results demonstrated that TRIM27 has involved in the PI3/AKT signaling pathway. Moreover, TRIM27 interacted with PTEN and mediated its poly-ubiquitination in ESCC cells. Importantly, the glycolysis inhibitor 3-BrPA also inhibited the effect of TRIM27 on ESCC cells. Hence, TRIM27 also participated in the regulation of energy metabolism in ESCC cells. CONCLUSIONS: This research not only gained a deep insight into the biological function of TRIM27 but also elucidated its potential target and signaling pathway in human ESCC cells.

15.
Molecules ; 24(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757042

RESUMO

Herpes simplex virus type 1 (HSV-1) is widespread double-stranded DNA (dsDNA) virus that establishes life-long latency and causes diverse severe symptoms. The mechanisms of HSV-1 infection and HSV-1's interactions with various host cells have been studied and reviewed extensively. Type I interferons were secreted by host cells upon HSV infection and play a vital role in controlling virus proliferation. A few studies, however, have focused on HSV-1 infection without the presence of interferon (IFN) signaling. In this study, HEK 293T cells with low toll-like receptor (TLR) and stimulator of interferon genes protein (STING) expression were infected with HSV-1 and subjected to a quantitative proteomic analysis. By using a subcellular fractionation strategy and high-performance mass spectrometry, a total of 6607 host proteins were quantified, of which 498 proteins were differentially regulated. A bioinformatics analysis indicated that multiple signaling pathways might be involved in HSV-1 infection. A further functional study indicated the role of Interferon-induced transmembrane protein 3 (IFITM3), Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 (CHCHD2), and Tripartite motif-containing protein 27 (TRIM27) in inhibiting viral DNA replication and proliferation. Our data provide a global view of host responses to HSV-1 infection in HEK 293T cells and identify the proteins involved in the HSV-1 infection process.


Assuntos
Replicação do DNA/fisiologia , DNA Viral , Proteínas de Ligação a DNA , Herpesvirus Humano 1/fisiologia , Proteínas de Membrana , Proteínas Nucleares , Proteômica , Proteínas de Ligação a RNA , Fatores de Transcrição , Replicação Viral/fisiologia , DNA Viral/biossíntese , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Biol Reprod ; 94(2): 31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26607717

RESUMO

Nicotine significantly promoted apoptosis in stages I, VII, VIII, and XI spermatogonia, stages I, VII, VIII, X, and XI spermatocytes, and stages I-V, VII, and VIII elongating spermatids. To explore the underlying molecular mechanisms, sperm mRNA next-generation sequencing of nicotine-treated mice was conducted. Out of the 86 genes related to apoptosis, Tnf (tumor necrosis factor alpha) was screened to be the most significant varied transcript, and the Onto-pathway analysis indicated that the TNF apoptotic pathway was especially activated by nicotine exposure. The TNF pathway was further studied at the gene and protein levels. The results showed that RIP1, the key component in the TNF apoptotic pathway, was up-expressed in its deubiquitinated form in nicotine-treated mice testis. TRIM27, an E3 ubiquitin ligase that activated TNF apoptotic pathway through up-regulating deubiquitinated RIP1, was also overexpressed in nicotine-treated spermatocytes; moreover, four consecutive CpG sites near the Trim27 transcription start site were less frequently methylated. Finally, in vitro experiments of Trim27 overexpression and RNA interference in GC-1 spermatogonial cells confirmed that the RIP1 deubiquitination and TRIM27 hyopmethylation were both positively correlated with spermatocyte apoptosis. In summary, our study suggests that nicotine may induce murine spermatozoal apoptosis via the TNF apoptotic pathway through up-regulation of deubiquitinated RIP1 by Trim27 promoter hypomethylation.


Assuntos
Apoptose/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Nicotina/farmacologia , Proteínas Nucleares/metabolismo , Espermatozoides/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Proteínas de Ligação a DNA/genética , Proteínas Ativadoras de GTPase/genética , Masculino , Camundongos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Ubiquitina-Proteína Ligases
17.
Clin Sci (Lond) ; 130(9): 733-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26846681

RESUMO

IgAN (IgA nephropathy) is the most common form of primary glomerulonephritis worldwide and has a strong genetic component. In this setting, DNA methylation could also be an important factor influencing this disease. We performed a genome-wide screening for DNA methylation in CD4(+) T-cells from IgAN patients and found three regions aberrantly methylated influencing genes involved in the response and proliferation of CD4(+) T-cells. Two hypomethylated regions codified genes involved in TCR (T-cell receptor) signalling, TRIM27 (tripartite motif-containing 27) and DUSP3 (dual-specificity phosphatase 3), and an hypermethylated region included the VTRNA2-1 (vault RNA 2-1) non-coding RNA, also known as miR-886 precursor. We showed that the aberrant methylation influences the expression of these genes in IgAN patients. Moreover, we demonstrated that the hypermethylation of the miR-886 precursor led to a decreased CD4(+) T-cell proliferation following TCR stimulation and to the overexpression of TGFß (transforming growth factor ß). Finally, we found a Th1/Th2 imbalance in IgAN patients. The IL (interleukin)-2/IL-5 ratio was notably higher in IgAN patients and clearly indicated a Th1 shift. In conclusion, we identified for the first time some specific DNA regions abnormally methylated in IgAN patients that led to the reduced TCR signal strength of the CD4(+) T-cells and to their anomalous response and activation that could explain the T-helper cell imbalance. The present study reveals new molecular mechanisms underlying the abnormal CD4(+) T-cell response in IgAN patients.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Metilação de DNA/genética , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/imunologia , Ativação Linfocitária/imunologia , Adulto , Estudos de Casos e Controles , Linhagem Celular , Ilhas de CpG/genética , Demografia , Feminino , Regulação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
18.
Pathol Int ; 66(4): 183-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26897041

RESUMO

Clinical pathologists have long been aware that in many types of human malignant tumors, the cells are often connected and form groups of various sizes or "nests". In this way, they achieve "collective invasion" into the surrounding stroma, rather than spreading out individually. Such collective behavior is also a common feature of migration during embryonic and postnatal developmental stages, suggesting there are advantages gained by collective cell migration in the organisms. Recent studies have revealed the mechanisms underlying the collective invasion of cancer cells. These mechanisms differ from those observed in the migration of single cells in culture, including reliance on the epithelial-mesenchymal transition program. Whereas intercellular adhesion appears to be coordinated, cancer cell groups can be heterogenous, including cells that are leaders and those that are followers. There is also interaction with the tumor microenvironment that is a prerequisite for collective invasion of cancer. In this review, we describe recently emerging mechanisms underlying the collective migration of cells, with a particular focus in our studies on the actin-binding protein Girdin/GIV and the transcriptional regulator tripartite motif containing 27. These studies provide new perspectives on the mechanistic analogy between cancer and development.


Assuntos
Invasividade Neoplásica , Neoplasias/patologia , Microambiente Tumoral , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo
19.
Am J Cancer Res ; 14(7): 3468-3482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113875

RESUMO

Altered protein ubiquitination is associated with cancer. The novel tripartite motif (TRIM) family of E3 ubiquitin ligases have been reported to play crucial roles in the development, growth, and metastasis of various tumors. The TRIM family member TRIM27 acts as a potential promoter of tumor development in a wide range of cancers. However, little is known regarding the biological features and clinical relevance of TRIM27 in glioblastoma (GBM). Here, we report findings of elevated TRIM27 expression in GBM tissues and GBM cell lines. Further functional analysis showed that TRIM27 deletion inhibited GBM cell growth both in vitro and in vivo. Furthermore, we found that TRIM27 promoted the growth of GBM cells by enhancing the Warburg effect. Additionally, the inactivation of the LKB1/AMPK/mTOR pathway was critical for the oncogenic effects of TRIM27 in GBM. Mechanistically, TRIM27 could directly bind to LKB1 and promote the ubiquitination and degradation of LKB1, which in turn enhanced the Warburg effect and GBM progression. Collectively, these data suggest that TRIM27 contributes to GNM pathogenesis by inhibiting the LKB1/AMPK/mTOR axis and may be a promising candidate as a potential diagnostic and therapeutic marker for patients with GBM.

20.
Discov Med ; 36(183): 816-826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665029

RESUMO

BACKGROUND: Pneumonia is a prevalent respiratory ailment involving complex physiological and pathological mechanisms. The tripartite motif containing 27 (TRIM27) plays a crucial role in regulating inflammation mechanisms. Therefore, the purpose of this study is to further explore the therapeutic potential of TRIM27 in pneumonia, based on its regulatory mechanisms in inflammation and autophagy. METHODS: This study established a mouse pneumonia animal model through lipopolysaccharide (LPS) administration, designating it as the LPS model group. Subsequently, adenovirus-mediated TRIM27 overexpression was implemented in the animals of the LPS model group, creating the TRIM27 treatment group. After a 7-day treatment period, lung tissues from the mice were collected. Various techniques, including immunohistochemistry, quantitative reverse transcription PCR (RT-qPCR), western blot, enzyme-linked immunosorbent assay (ELISA), and electron microscopy were utilized to analyze the impact of TRIM27 overexpression on inflammatory factors, oxidative stress, autophagy, and inflammatory processes in pulmonary tissues. Finally, an in vitro LPS cell model was established, and the effects of TRIM27 overexpression and autophagy inhibition on inflammatory cytokines and autophagosomes in LPS-induced inflammatory cells were examined through RT-qPCR and immunofluorescence techniques. RESULTS: The research findings demonstrate a significant reduction in the elevated levels of interleukin-6 (IL-6), IL-1ß, and Tumor necrosis factor-alpha (TNF-α) induced by LPS with TRIM27 overexpression (p < 0.01). Conversely, the autophagy inhibitor 3-Methyladenine (3-MA) diminished the effects induced by TRIM27 overexpression. Moreover, TRIM27 overexpression enhanced the expression of Microtubule-associated protein 1A/1B light chain 3 (LC3) II/I and Beclin-1 proteins in mice subjected to LPS stimulation (p < 0.01), while reducing the expression of the p62 protein (p < 0.01). The addition of 3-MA, however, decreased Beclin-1 expression and inhibited autophagy (p < 0.01). Additionally, TRIM27 overexpression decreased the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved caspase-1, IL-1ß, and Gasdermin D N-terminal fragment (GSDMD-N) proteins in LPS-stimulated mice (p < 0.05). TRIM27 overexpression also decreased the levels of malondialdehyde (MDA), Activating Transcription Factor 6 (ATF6), and C/EBP-homologous protein (CHOP), while increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in mice exposed to LPS (p < 0.01). CONCLUSION: The induction of TRIM27 overexpression emerges as a potential and effective pneumonia treatment. The underlying mechanism may involve inducing protective autophagy, thereby reducing oxidative stress and cell pyroptosis.


Assuntos
Autofagia , Pneumonia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Masculino , Camundongos , Adenina/análogos & derivados , Adenina/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Modelos Animais de Doenças , Proteínas de Ligação a DNA , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/patologia , Pneumonia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA