Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2215777120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585464

RESUMO

TRPML3 is a Ca2+/Na+ release channel residing in both phagophores and endolysosomal membranes. It is activated by PI3P and PI3,5P2. Its activity can be enhanced by high luminal pH and by replacing luminal Na+ with K+. Here, we report that big-conductance Ca2+-activated potassium (BK) channels form a positive feedback loop with TRPML3. Ca2+ release via TRPML3 activates BK, which in turn facilitates TRPML3-mediated Ca2+ release, potentially through removing luminal Na+ inhibition. We further show that TRPML3/BK and mammalian target of rapamycin (mTOR) form another positive feedback loop to facilitate autophagy induction in response to nutrient starvation, i.e., mTOR inhibition upon nutrient starvation activates TRPML3/BK, and this further reduces mTOR activity, thereby increasing autophagy induction. Mechanistically, the feedback regulation between TRPML3/BK and mTOR is mediated by PI3P, an endogenous TRPML3 activator that is enriched in phagophores and is up-regulated by mTOR reduction. Importantly, bacterial infection activates TRPML3 in a BK-dependent manner, and both TRPML3 and BK are required for mTOR suppression and autophagy induction responding to bacterial infection. Suppressing either TRPML3 or BK helps bacteria survival whereas increasing either TRPML3 or BK favors bacterial clearance. Considering that TRPML3/BK is inhibited by low luminal pH but activated by high luminal pH and PI3P in phagophores, we suggest that TRPML3/BK and mTOR form a positive feedback loop via PI3P to ensure efficient autophagy induction in response to nutrient deprivation and bacterial infection. Our study reveals a role of TRPML3-BK coupling in controlling cellular homeostasis and intracellular bacterial clearance via regulating mTOR signaling.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Sirolimo , Retroalimentação , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Autofagia , Bactérias , Serina-Treonina Quinases TOR
2.
Rev Physiol Biochem Pharmacol ; 185: 259-276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32748124

RESUMO

Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.


Assuntos
COVID-19 , Cólera , Ebolavirus , Infecções por HIV , Doença pelo Vírus Ebola , Influenza Humana , Staphylococcus aureus Resistente à Meticilina , Humanos , COVID-19/metabolismo , Doença pelo Vírus Ebola/metabolismo , Influenza Humana/metabolismo , Cólera/metabolismo , Infecções por HIV/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Lisossomos/metabolismo , Cátions/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(43): e2200085119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252030

RESUMO

Autophagy is a multiple fusion event, initiating with autophagosome formation and culminating with fusion with endo-lysosomes in a Ca2+-dependent manner. The source of Ca2+ and the molecular mechanism by which Ca2+ is provided for this process are not known. The intracellular Ca2+ permeable channel transient receptor potential mucolipin 3 (TRPML3) localizes in the autophagosome and interacts with the mammalian autophagy-related protein 8 (ATG8) homolog GATE16. Here, we show that lipid-regulated TRPML3 is the Ca2+ release channel in the phagophore that provides the Ca2+ necessary for autophagy progress. We generated a TRPML3-GCaMP6 fusion protein as a targeted reporter of TRPML3 compartment localization and channel function. Notably, TRPML3-GCaMP6 localized in the phagophores, the level of which increased in response to nutrient starvation. Importantly, phosphatidylinositol-3-phosphate (PI3P), an essential lipid for autophagosome formation, is a selective regulator of TRPML3. TRPML3 interacted with PI3P, which is a direct activator of TRPML3 current and Ca2+ release from the phagophore, to promote and increase autophagy. Inhibition of TRPML3 suppressed autophagy even in the presence of excess PI3P, while activation of TRPML3 reversed the autophagy inhibition caused by blocking PI3P. Moreover, disruption of the TRPML3-PI3P interaction abolished both TRPML3 activation by PI3P and the increase in autophagy. Taken together, these results reveal that TRPML3 is a downstream effector of PI3P and a key regulator of autophagy. Activation of TRPML3 by PI3P is the critical step providing Ca2+ from the phagophore for the fusion process, which is essential for autophagosome biogenesis.


Assuntos
Autofagossomos , Autofagia , Animais , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Fosfatos/metabolismo
4.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545371

RESUMO

Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.


Assuntos
Canais de Cálcio/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Evolução Molecular , Proteínas Fúngicas/fisiologia , Humanos , Proteínas de Plantas/fisiologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
5.
Semin Cell Dev Biol ; 24(6-7): 576-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23583561

RESUMO

The characterisation of the pleiotropic effects of coat colour-associated mutations in mammals illustrates that sensory organs and nerves are particularly affected by disorders because of the shared origin of melanocytes and neurocytes in the neural crest; e.g. the eye-colour is a valuable indicator of disorders in pigment production and eye dysfunctions. Disorders related to coat colour-associated alleles also occur in the skin (melanoma), reproductive tract and immune system. Additionally, the coat colour phenotype of an individual influences its general behaviour and fitness. Mutations in the same genes often produce similar coat colours and pleiotropic effects in different species (e.g., KIT [reproductive disorders, lethality], EDNRB [megacolon] and LYST [CHS]). Whereas similar disorders and similar-looking coat colour phenotypes sometimes have a different genetic background (e.g., deafness [EDN3/EDNRB, MITF, PAX and SNAI2] and visual diseases [OCA2, RAB38, SLC24A5, SLC45A2, TRPM1 and TYR]). The human predilection for fancy phenotypes that ignore disorders and genetic defects is a major driving force for the increase of pleiotropic effects in domestic species and laboratory subjects since domestication has commenced approximately 18,000 years ago.


Assuntos
Pleiotropia Genética/genética , Cor de Cabelo/genética , Mutação/genética , Alelos , Animais , Cor , Humanos , Camundongos
6.
Biochem Biophys Res Commun ; 443(1): 56-61, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269818

RESUMO

TRPML3 is a Ca(2+) permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca(2+) in the fusion process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Canais de Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Família da Proteína 8 Relacionada à Autofagia , Canais de Cálcio/genética , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mapeamento de Interação de Proteínas , Canais de Potencial de Receptor Transitório/genética , Ubiquitina/metabolismo
7.
Autophagy ; 20(5): 1203-1204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38180017

RESUMO

MCOLN1 and MCOLN3 are two Ca2+ release channels residing in the endolysosomal membrane. They are activated by phosphatidylinositol (PtdIns)-3-phosphate (PtdIns3P) and/or PtdIns(3,5)P2. Their activities are also regulated by lumenal pH, with low pH enhancing that of MCOLN1 and high pH increasing that of MCOLN3. Recent studies further suggest that upon starvation, both MCOLN1 and MCOLN3 are activated by a reduction in MTORC1 activity; their activation in turn regulates MTORC1 activity to facilitate macroautophagic/autophagic flux. On the one hand, MCOLN3 appears to be recruited to phagophores where it is activated by PtdIns3P and high pH to inhibit MTORC1 activity using a positive feedback mechanism, thereby increasing autophagy induction. On the other hand, MCOLN1 is activated by PtdIns(3,5)P2 and low pH in (auto)lysosomes to increase MTORC1 activity using a negative feedback mechanism, promoting autophagic lysosome reformation. The cell uses the two feedback mechanisms to ensure efficient autophagic flux to survive adverse conditions such as nutrient deprivation and bacterial infection.


Assuntos
Autofagia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia/fisiologia , Humanos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Lisossomos/metabolismo , Modelos Biológicos
8.
Autophagy ; 19(2): 377-378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36383451

RESUMO

In recent years, an increasing number of studies have started to investigate the roles of ions and ion channels in macroautophagy/autophagy. One finding is that calcium regulates multiple stages of autophagy with lysosomal calcium release being important for autophagosome and lysosome fusion. MCOLN3/TRPML3, as a calcium-permeable channel that is located on both lysosomes and autophagosomes, has been suggested as an autophagy regulator and a candidate to provide the calcium for autophagic fusion, but how this channel is activated remains unclear. In a recent article, Kim et al. demonstrate that MCOLN3 is a PtdIns3P downstream effector, and the activation of its channel function is critical for autophagosome biogenesis.


Assuntos
Autofagossomos , Autofagia , Fosfatos de Fosfatidilinositol , Canais de Potencial de Receptor Transitório , Autofagossomos/metabolismo , Autofagossomos/fisiologia , Autofagia/genética , Autofagia/fisiologia , Cálcio , Canais de Cálcio/metabolismo , Lisossomos , Macroautofagia , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
9.
Cells ; 11(2)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053420

RESUMO

Endolysosomal cation channels are emerging as key players of endolysosomal function such as endolysosomal trafficking, fusion/fission, lysosomal pH regulation, autophagy, lysosomal exocytosis, and endocytosis. Diseases comprise lysosomal storage disorders (LSDs) and neurodegenerative diseases, metabolic diseases, pigmentation defects, cancer, immune disorders, autophagy related diseases, infectious diseases and many more. Involvement in lung diseases has not been a focus of attention so far but recent developments in the field suggest critical functions in lung physiology and pathophysiology. Thus, loss of TRPML3 was discovered to exacerbate emphysema formation and cigarette smoke induced COPD due to dysregulated matrix metalloproteinase 12 (MMP-12) levels in the extracellular matrix of the lung, a known risk factor for emphysema/COPD. While direct lung function measurements with the exception of TRPML3 are missing for other endolysosomal cation channels or channels expressed in lysosome related organelles (LRO) in the lung, links between those channels and important roles in lung physiology have been established such as the role of P2X4 in surfactant release from alveolar epithelial Type II cells. Other channels with demonstrated functions and disease relevance in the lung such as TRPM2, TRPV2, or TRPA1 may mediate their effects due to plasma membrane expression but evidence accumulates that these channels might also be expressed in endolysosomes, suggesting additional and/or dual roles of these channels in cell and intracellular membranes. We will discuss here the current knowledge on cation channels residing in endolysosomes or LROs with respect to their emerging roles in lung disease.


Assuntos
Endossomos/metabolismo , Canais Iônicos/metabolismo , Pneumopatias/metabolismo , Lisossomos/metabolismo , Animais , Cátions/metabolismo , Humanos , Fagocitose
10.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139381

RESUMO

Lysosomal storage diseases (LSDs) resulting from inherited gene mutations constitute a family of disorders that disturb lysosomal degradative function leading to abnormal storage of macromolecular substrates. In most LSDs, central nervous system (CNS) involvement is common and leads to the progressive appearance of neurodegeneration and early death. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of neurodegenerative LSDs. One of the main basic mechanisms through which the endolysosomal ion channels regulate the function of the endolysosomal system is Ca2+ release, which is thought to be essential for intracellular compartment fusion, fission, trafficking and lysosomal exocytosis. The intracellular TRPML (transient receptor potential mucolipin) and TPC (two-pore channel) ion channel families constitute the main essential Ca2+-permeable channels expressed on endolysosomal membranes, and they are considered potential drug targets for the prevention and treatment of LSDs. Although TRPML1 activation has shown rescue effects on LSD phenotypes, its activity is pH dependent, and it is blocked by sphingomyelin accumulation, which is characteristic of some LSDs. In contrast, TPC2 activation is pH-independent and not blocked by sphingomyelin, potentially representing an advantage over TRPML1. Here, we discuss the rescue of cellular phenotypes associated with LSDs such as cholesterol and lactosylceramide (LacCer) accumulation or ultrastructural changes seen by electron microscopy, mediated by the small molecule agonist of TPC2, TPC2-A1-P, which promotes lysosomal exocytosis and autophagy. In summary, new data suggest that TPC2 is a promising target for the treatment of different types of LSDs such as MLIV, NPC1, and Batten disease, both in vitro and in vivo.


Assuntos
Lactosilceramidas , Doenças por Armazenamento dos Lisossomos , Humanos , Canais Iônicos , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/ultraestrutura , Esfingomielinas
11.
Cell Calcium ; 103: 102553, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35144097

RESUMO

Neurodegenerative diseases (ND) pose a serious health burden to society and healthcare systems alike, with increasing incidence rates especially within aging populations. Alzheimer's disease (AD) is the most prevalent type of ND or dementia, followed by Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. Progressive neurological dysfunction and regional neuronal loss constitute the common characteristics of ND. Many ND are accompanied by accumulation of protein aggregates such as extracellular amyloid-ß (in AD), intraneuronal hyper-phosphorylated tau (in AD), or α-synuclein (in PD). Two main systems are responsible for the clearance of damaged, dysfunctional or senescent proteins inside cells: the autophagy-lysosomal pathway and the ubiquitin-proteasome system. The importance of lysosomes in neurodegenerative processes is further highlighted by clinical phenotypes of lysosomal storage disorders (LSDs), comprising more than 70 inheritable diseases caused by mutations in lysosomal enzymes or lysosomal membrane proteins, often resulting in severe neurodegeneration. Dysfunctional lysosomal proteins and enzymes result in the lysosomal accumulation of undigested macromolecules, e.g. lipids, glycoproteins, glycosaminoglycans, or gangliosides. Defects in intracellular transport pathways involving endosomes and lysosomes are increasingly recognized as drivers of neurodegenerative disease pathology including AD and PD. Thus, accumulation of damaged proteins and organelles (e.g. mitochondria) in neurons and glial cells overwhelms the capacity of intracellular recycling and degradation mechanisms, exacerbating disease pathology. Endolysosomal ion channels have recently been established as important regulators of lysosomal exocytosis, ion homeostasis/pH, endolysosomal trafficking, fusion and fission, and autophagy. In particular two non-selective endolysosomal cation channel families, the mucolipin/TRPML/MCOLN channels and the two-pore channels/TPCs will be discussed here as potential pharmacological targets for LSD/ND treatment.


Assuntos
Doenças Neurodegenerativas , Canais de Potencial de Receptor Transitório , Transporte Biológico , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Canais de Potencial de Receptor Transitório/metabolismo
12.
Antiviral Res ; 195: 105193, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687820

RESUMO

Transient receptor potential mucolipin 2 and 3 (TRPML2 and TRPML3), as key channels in the endosomal-lysosomal system, are associated with many different cellular processes, including ion release, membrane trafficking and autophagy. In particular, they can also facilitate viral entry into host cells and enhance viral infection. We previously identified that two selective TRPML agonists, ML-SA1 and SN-2, that showed antiviral activities against dengue virus type 2 (DENV2) and Zika virus (ZIKV) in vitro, but their antiviral mechanisms are still elusive. Here, we reported that ML-SA1 could inhibit DENV2 replication by downregulating the expression of both TRPML2 and TRPML3, while the other TRPML activator, SN-2, suppressed DENV2 infection by reducing only TRPML3 expression. Consistently, the channel activities of both TRPML2 and TRPML3 were also found to be associated with the antiviral activity of ML-SA1 on DENV2 and ZIKV, but SN-2 relied only on TRPML3 channel activity. Further mechanistic experiments revealed that ML-SA1 and SN-2 decreased the expression of the late endosomal marker Rab7, dependent on TRPML2 and TRPML3, indicating that these two compounds likely inhibit viral infection by promoting vesicular trafficking from late endosomes to lysosomes and then accelerating lysosomal degradation of the virus. As expected, neither ML-SA1 nor SN-2 inhibited herpes simplex virus type I (HSV-1), whose entry is independent of the endolysosomal network. Together, our work reveals the antiviral mechanisms of ML-SA1 and SN-2 in targeting TRPML channels, possibly leading to the discovery of new drug candidates to inhibit endocytosed viruses.


Assuntos
Antivirais/farmacologia , Ftalimidas/farmacologia , Quinolinas/farmacologia , Canais de Potencial de Receptor Transitório/agonistas , Zika virus/efeitos dos fármacos , Células A549 , Animais , Autofagia , Chlorocebus aethiops , Endossomos/enzimologia , Endossomos/metabolismo , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Células Vero , Infecção por Zika virus/virologia
13.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1111-1123, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30395881

RESUMO

BACKGROUND: The endolysosomal, non-selective cation channels, two-pore channels (TPCs) and mucolipins (TRPMLs), regulate intracellular membrane dynamics and autophagy. While partially compensatory for each other, isoform-specific intracellular distribution, cell-type expression patterns, and regulatory mechanisms suggest different channel isoforms confer distinct properties to the cell. SCOPE OF REVIEW: Briefly, established TPC/TRPML functions and interaction partners ('interactomes') are discussed. Novel TRPML3 interactors are shown, and a meta-analysis of experimentally obtained channel interactomes conducted. Accordingly, interactomes are compared and contrasted, and subsequently described in detail for TPC1, TPC2, TRPML1, and TRPML3. MAJOR CONCLUSIONS: TPC interactomes are well-defined, encompassing intracellular membrane organisation proteins. TRPML interactomes are varied, encompassing cardiac contractility- and chaperone-mediated autophagy proteins, alongside regulators of intercellular signalling. GENERAL SIGNIFICANCE: Comprising recently proposed targets to treat cancers, infections, metabolic disease and neurodegeneration, the advancement of TPC/TRPML understanding is of considerable importance. This review proposes novel directions elucidating TPC/TRPML relevance in health and disease. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Canais de Cálcio/genética , Humanos , Canais de Potencial de Receptor Transitório/genética
14.
Autophagy ; 15(2): 327-340, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30215288

RESUMO

MCOLN3/TRPML3 is a Ca2+-permeable cation channel that is expressed in multiple subcellular compartments with dynamic localization. Our previous studies suggest that upon macroautophagy/autophagy induction MCOLN3/TRPML3 is recruited and provides Ca2+ for the fusion process in autophagosome biogenesis. However, how intracellular trafficking and the Ca2+ channel function of MCOLN3/TRPML3 are related to autophagy are not known. Here we report that MCOLN3/TRPML3 undergoes palmitoylation at its C-terminal region, which is required for dynamic trafficking and cellular function of MCOLN3/TRPML3 in autophagy. Palmitoylation regulated MCOLN3/TRPML3 surface expression and trafficking, but not channel properties or localization and function of intracellular MCOLN3/TRPML3. Activation of intracellular MCOLN3/TRPML3 induced robust Ca2+ release, which solely increased autophagy in Ca2+- and palmitoylation-dependent manners. Palmitoylation regulated not only intracellular MCOLN3/TRPML3 trafficking to autophagic structures but also autophagic flux in induced autophagy. Importantly, nutrient starvation activated MCOLN3/TRPML3 to release Ca2+ and increased the level of MCOLN3/TRPML3 palmitoylation. Disruption of MCOLN3/TRPML3 palmitoylation, however, abolished the starvation-induced MCOLN3/TRPML3 activation without affecting channel activity. These results suggest that trafficking and channel function of MCOLN3/TRPML3 are regulated in the context of autophagy, and palmitoylation is a prerequisite for the function of MCOLN3/TRPML3 as a Ca2+ channel in autophagosome formation by controlling its trafficking between subcellular compartments. Abbreviations: 17-ODYA, 17-octadecynoic acid; 2-BP, 2-bromopalmitate; BFA, brefeldin A; DN, dominant-negative; GPN, glycyl-L-phenylalanine-beta-naphthylamide; HN, hydroxylamine; KD, knockdown; MCOLN3/TRPML3, mucolipin 3; MS, mass spectrometry; PAT, palmitoyl acyltransferase; PM, plasma membrane; WT, wild type; ZDHHC, a zinc-finger motif and an Asp-His-His-Cys sequence.


Assuntos
Autofagia , Canais de Cálcio/metabolismo , Espaço Intracelular/metabolismo , Lipoilação , Canais de Potencial de Receptor Transitório/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/química , Endocitose , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Canais de Potencial de Receptor Transitório/química
15.
Cell Chem Biol ; 24(7): 907-916.e4, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28732201

RESUMO

To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Androstadienos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Endossomos/metabolismo , Tiazolidinas/farmacologia , Aminopiridinas/farmacologia , Antígeno CD11b/metabolismo , Endossomos/efeitos dos fármacos , Células HEK293 , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Técnicas de Patch-Clamp , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Wortmanina , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
16.
Cell Calcium ; 60(2): 123-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26995055

RESUMO

Intracellular calcium (Ca(2+)) levels play a vital role in regulating cellular fate. The coordination and interrelation among the cellular organelles, mainly the intracellular Ca(2+) stores in endoplasmic reticulum (ER), are crucial in maintaining cytosolic Ca(2+) levels and in general cellular homeostasis. Moreover, maintaining Ca(2+) homeostasis is essential for regulating diverse and sometimes opposing processes such as cell survival and cell death in disease conditions such as, neurodegeneration, cancer and aging. Ca(2+) is able to regulate opposing functions by either regulating the cellular "self-eating" phenomenon of autophagy to promote cell survival or by regulating the programmed cell death process of apoptosis. Autophagy is also important for cell survival especially after induction of ER stress and association between ER stress and autophagy may have relevance to numerous diseases. Moreover, a multitude of evidence is emerging that the functional regulation of TRP channels, their unique localization, and their interaction with other Ca(2+)-sensing elements define these diverse regulatory pathways. It is this unique function which allows individual TRP channels to contribute differently in the regulation of cell fate and, in turn, determines the precise effect of modulating Ca(2+) signaling via the particular channel. Thus, in this review we have focused on the aspects of TRP channel localization and function (Ca(2+) signaling) that affects the ER stress and autophagic process.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sinalização do Cálcio , Humanos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA