Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 484, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578353

RESUMO

BACKGROUND: Mitochondrial Ts translation elongation factor (TSFM) is an enzyme that catalyzes exchange of guanine nucleotides. By forming a complex with mitochondrial Tu translation elongation factor (TUFM), TSFM participates in mitochondrial protein translation. We have previously reported that TUFM regulates translation of beta-site APP cleaving enzyme 1 (BACE1) via ROS (reactive oxygen species)-dependent mechanism, suggesting a potential role in amyloid precursor protein (APP) processing associated with Alzheimer's disease (AD), which led to the speculation that TSFM may regulate APP processing in a similar way to TUFM. METHODS AND RESULTS: Here, we report that in cultured cells, knockdown or overexpression TSFM did not change protein levels in BACE1 and APP. Besides, the levels of cytoplasmic ROS and mitochondrial superoxide, in addition to ATP level, cell viability and mitochondrial membrane potential were not significantly altered by TSFM knockdown in the short term. Further transcriptome analysis revealed that expression of majority of mitochondrial genes were not remarkably changed by TSFM silencing. The possibility of TSFM involved in cardiomyopathy and cancer development was uncovered using bioinformatics analysis. CONCLUSIONS: Collectively, short-term regulation of TSFM level in cultured cells does not cause a significant change in proteins involved in APP processing, levels in ROS and ATP associated with mitochondrial function. Whereas our study could contribute to comprehend certain clinical features of TSFM mutations, the roles of TSFM in cardiomyopathy and cancer development might deserve further investigation.


Assuntos
Doença de Alzheimer , Cardiomiopatias , Neoplasias , Humanos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Aspártico Endopeptidases/genética , Doença de Alzheimer/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Cardiomiopatias/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Trifosfato de Adenosina , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Front Immunol ; 13: 931831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405756

RESUMO

Background: Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS. Methods: Our study focused on 10 bioinformatically prioritized SNP-gene pairs, in which the SNP has a high potential to alter alternative splicing events (ASEs). We tested for differential gene expression and differential alternative splicing in B cells from MS patients and healthy controls. We further examined the impact of the SNP genotypes on ASEs and on splice isoform expression levels. Novel genotype-dependent effects on splicing were verified with splicing reporter minigene assays. Results: We were able to confirm previously described findings regarding the relation of MS-associated SNPs with the ASEs of the pre-mRNAs from GSDMB and SP140. We also observed an increased IL7R exon 6 skipping when comparing relapsing and progressive MS patients to healthy subjects. Moreover, we found evidence that the MS risk alleles of the SNPs rs3851808 (EFCAB13), rs1131123 (HLA-C), rs10783847 (TSFM), and rs2014886 (TSFM) may contribute to a differential splicing pattern. Of particular interest is the genotype-dependent exon skipping of TSFM due to the SNP rs2014886. The minor allele T creates a donor splice site, resulting in the expression of the exon 3 and 4 of a short TSFM transcript isoform, whereas in the presence of the MS risk allele C, this donor site is absent, and thus the short transcript isoform is not expressed. Conclusion: In summary, we found that genetic variants from MS risk loci affect pre-mRNA splicing. Our findings substantiate the role of ASEs with respect to the genetics of MS. Further studies on how disease-causing genetic variants may modify the interactions between splicing regulatory sequence elements and RNA-binding proteins can help to deepen our understanding of the genetic susceptibility to MS.


Assuntos
Esclerose Múltipla , Precursores de RNA , Humanos , Precursores de RNA/genética , Esclerose Múltipla/genética , Splicing de RNA , Éxons , Predisposição Genética para Doença , Isoformas de Proteínas/genética , Fatores de Alongamento de Peptídeos/genética , Proteínas Mitocondriais/genética
3.
Front Cardiovasc Med ; 8: 798985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071363

RESUMO

We report a case of hypertrophic cardiomyopathy and lactic acidosis in a 3-year-old female. Cardiac and skeletal muscles biopsies exhibited mitochondrial hyperplasia with decreased complex IV activity. Whole exome sequencing identified compound heterozygous variants, p.Arg333Trp and p.Val119Leu, in TSFM, a nuclear gene that encodes a mitochondrial translation elongation factor, resulting in impaired oxidative phosphorylation and juvenile hypertrophic cardiomyopathy.

5.
Gene ; 527(1): 1-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727608

RESUMO

The respiratory defects associated with mutations in human mitochondrial tRNA genes can be mimicked in yeast, which is the only organism easily amenable to mitochondrial transformation. This approach has shown that overexpression of several nuclear genes coding for factors involved in mitochondrial protein synthesis can alleviate the respiratory defects both in yeast and in human cells. The present paper analyzes in detail the effects of overexpressed yeast and human mitochondrial translation elongation factors EF-Tu. We studied the suppressing activity versus the function in mt translation of mutated versions of this factor and we obtained indications on the mechanism of suppression. Moreover from a more extended search for suppressor genes we isolated factors which might be active in mitochondrial biogenesis. Results indicate that the multiplicity of mitochondrial factors as well as their high variability of expression levels can account for the variable severity of mitochondrial diseases and might suggest possible therapeutic approaches.


Assuntos
Doenças Mitocondriais/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Consumo de Oxigênio , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA