Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
2.
Metabolism ; 144: 155556, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121307

RESUMO

BACKGROUND: Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS: To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS: TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS: Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT: Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.


Assuntos
Gonadotropinas , Kisspeptinas , Masculino , Feminino , Camundongos , Humanos , Animais , Kisspeptinas/genética , Neurônios/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Fertilidade
3.
Front Neural Circuits ; 16: 918839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860212

RESUMO

Neuropeptides play an important role in modulating mesolimbic system function. However, while synaptic inputs to the ventral tegmental area (VTA) have been extensively mapped, the sources of many neuropeptides are not well resolved. Here, we mapped the anatomical locations of three neuropeptide inputs to the VTA: neurotensin (NTS), corticotrophin releasing factor (CRF), and neurokinin B (NkB). Among numerous labeled inputs we identified the bed nucleus of the stria terminalis (BNST) as a major source of all three peptides, containing similar numbers of NTS, CRF, and NkB VTA projection neurons. Approximately 50% of BNST to VTA inputs co-expressed two or more of the peptides examined. Consistent with this expression pattern, analysis of calcium dynamics in the terminals of these inputs in the VTA revealed both common and distinct patterns of activation during appetitive and aversive conditioning. These data demonstrate additional diversification of the mesolimbic dopamine system through partially overlapping neuropeptidergic inputs.


Assuntos
Núcleos Septais , Área Tegmentar Ventral , Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Recompensa , Núcleos Septais/metabolismo , Área Tegmentar Ventral/fisiologia
4.
Mol Cell Endocrinol ; 551: 111654, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469849

RESUMO

The mechanisms regulating puberty still remain elusive, as do the underlying causes for sex differences in puberty onset (girls before boys) and pubertal disorders. Neuroendocrine puberty onset is signified by increased pulsatile GnRH secretion, yet how and when various upstream reproductive neural circuits change developmentally to govern this process is poorly understood. We previously reported day-by-day peri-pubertal increases (Kiss1, Tac2) or decreases (Rfrp) in hypothalamic gene expression of female mice, with several brain mRNA changes preceding external pubertal markers. However, similar pubertal measures in males were not previously reported. Here, to identify possible neural sex differences underlying sex differences in puberty onset, we analyzed peri-pubertal males and directly compared them with female littermates. Kiss1 expression in male mice increased over the peri-pubertal period in both the AVPV and ARC nuclei but with lower levels than in females at several ages. Likewise, Tac2 expression in the male ARC increased between juvenile and older peri-pubertal stages but with levels lower than females at most ages. By contrast, both DMN Rfrp expressionand Rfrp neuronal activation strongly decreased in males between juvenile and peri-pubertal stages, but with similar levels as females. Neither ARC KNDy neuronal activation nor Kiss1r expression in GnRH neurons differed between males and females or changed with age. These findings delineate several peri-pubertal changes in neural populations in developing males, with notable sex differences in kisspeptin and NKB neuron developmental patterns. Whether these peri-pubertal hypothalamic sex differences underlie sex differences in puberty onset deserves future investigation.


Assuntos
Kisspeptinas , Taquicininas , Animais , Feminino , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/biossíntese , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Puberdade/genética , Caracteres Sexuais , Maturidade Sexual/genética , Taquicininas/biossíntese , Taquicininas/genética
5.
Endocrinology ; 161(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075809

RESUMO

Androgens can affect the reproductive axis of both sexes. In healthy women, as in men, elevated exogenous androgens decrease gonad function and lower gonadotropin levels; such circumstances occur with anabolic steroid abuse or in transgender men (genetic XX individuals) taking androgen supplements. The neuroendocrine mechanisms by which endogenous or exogenous androgens regulate gonadotropin release, including aspects of pulsatile luteinizing hormone (LH) secretion, remain unknown. Because animal models are valuable for interrogating neural and pituitary mechanisms, we studied effects of androgens in the normal male physiological range on in vivo LH secretion parameters in female mice and in vitro LH secretion patterns from isolated female pituitaries. We also assessed androgen effects on hypothalamic and gonadotrope gene expression in female mice, which may contribute to altered LH secretion profiles. We used a nonaromatizable androgen, dihydrotestosterone (DHT), to isolate effects occurring specifically via androgen receptor (AR) signaling. Compared with control females, DHT-treated females exhibited markedly reduced in vivo LH pulsatility, with decreases in pulse frequency, amplitude, peak, and basal LH levels. Correlating with reduced LH pulsatility, DHT-treated females also exhibited suppressed arcuate nucleus Kiss1 and Tac2 expression. Separate from these neural effects, we determined in vitro that the female pituitary is directly inhibited by AR signaling, resulting in lower basal LH levels and reduced LH secretory responses to gonadotropin-releasing hormone pulses, along with lower gonadotropin gene expression. Thus, in normal adult females, male levels of androgen acting via AR can strongly inhibit the reproductive axis at both the neural and pituitary levels.


Assuntos
Androgênios/farmacologia , Di-Hidrotestosterona/farmacologia , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Hormônio Luteinizante/sangue , Neurônios/efeitos dos fármacos , Precursores de Proteínas/metabolismo , Taquicininas/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Camundongos , Neurônios/metabolismo , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Precursores de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Taquicininas/genética
6.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031594

RESUMO

Polycystic ovary syndrome (PCOS), a common reproductive disorder in women, is characterized by hyperandrogenemia, chronic anovulation, cystic ovarian follicles, and luteinizing hormone (LH) hyper-pulsatility, but the pathophysiology isn't completely understood. We recently reported a novel mouse model of PCOS using chronic letrozole (LET; aromatase inhibitor). Letrozole-treated females demonstrate multiple PCOS-like phenotypes, including polycystic ovaries, anovulation, and elevated circulating testosterone and LH, assayed in "one-off" measures. However, due to technical limitations, in vivo LH pulsatile secretion, which is elevated in PCOS women, was not previously studied, nor were the possible changes in reproductive neurons. Here, we used recent technical advances to examine in vivo LH pulse dynamics of freely moving LET female mice versus control and ovariectomized (OVX) mice. We also determined whether neural gene expression of important reproductive regulators such as kisspeptin, neurokinin B (NKB), and dynorphin, is altered in LET females. Compared to controls, LET females exhibited very rapid, elevated in vivo LH pulsatility, with increased pulse frequency, amplitude, and basal levels, similar to PCOS women. Letrozole-treated mice also had markedly elevated Kiss1, Tac2, and Pdyn expression and increased Kiss1 neuronal activation in the hypothalamic arcuate nucleus. Notably, the hyperactive LH pulses and increased kisspeptin neuron measures of LET mice were not as elevated as OVX females. Our findings indicate that LET mice, like PCOS women, have markedly elevated LH pulsatility, which likely drives increased androgen secretion. Increased hypothalamic kisspeptin and NKB levels may be fundamental contributors to the hyperactive LH pulse secretion in the LET PCOS-like condition and, perhaps, in PCOS women.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/sangue , Neurocinina B/metabolismo , Síndrome do Ovário Policístico/metabolismo , Animais , Inibidores da Aromatase , Modelos Animais de Doenças , Dinorfinas/genética , Dinorfinas/metabolismo , Feminino , Expressão Gênica , Kisspeptinas/genética , Letrozol , Camundongos , Neurocinina B/genética , Neurônios/metabolismo , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/induzido quimicamente
7.
Exp Ther Med ; 20(5): 113, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32989391

RESUMO

Gastric cancer is one of the most common types of malignancy worldwide. Tac2-N (TC2N) has been reported to serve as either an oncogene or tumor suppressor in numerous different types of cancer; however, the role of TC2N in gastric cancer remains poorly understood. The present study aimed to investigate the role of TC2N in gastric cancer and reveal its regulatory mechanism. A Cell Counting Kit-8 assay was used to analyze the cell proliferation rate, while wound healing and Transwell Matrigel assays were performed to determine the cell migratory and invasive abilities, respectively. Cell cycle distribution was determined by flow cytometric analysis, and the expression levels of TC2N, P-glycoprotein (P-gp), cyclin D1, CDK4, cyclin E1, MMP2, MMP9 and N-Myc downstream regulated gene 1 were analyzed using reverse transcription-quantitative PCR or western blotting. Bioinformatics analysis revealed a high expression of TC2N in patients with gastric cancer. The experimental results revealed that TC2N expression levels were significantly unregulated in gastric cancer cell lines. The knockdown of TC2N in AGS cells significantly inhibited the cell proliferation rate and induced cell cycle arrest at the G0/G1 phase, while downregulating cyclin E1, cyclin D1 and CDK4 expression levels. The knockdown of TC2N also inhibited cell migration and invasion. Furthermore, the knockdown of TC2N improved the sensitivity of AGS cells to cisplatin, paclitaxel and 5-fluorouracil, and downregulated the protein expression levels of P-gp. By contrast, TC2N overexpression exerted the opposite effects in AGS cells. In conclusion, the findings of the present study indicated that the genetic knockdown of TC2N may inhibit cell proliferation, migration and invasion, while inducing cell cycle arrest in the G1/S phase and reversing the drug resistance of AGS cells, which may be partly through inhibiting P-gp expression levels. Thus, TC2N may serve as a novel diagnostic marker and therapeutic target for patients with gastric cancer.

8.
Asian Pac J Cancer Prev ; 21(11): 3199-3209, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247676

RESUMO

BACKGROUND: Role of TC2N in carcinogenesis has been largely unfathomed until recently when it was identified as a novel oncogene in lung cancer. Subsequently, a tumour suppressor role of TC2N was reported in breast cancer. It is therefore highly relevant to investigate TC2N molecular partners/mechanisms on a larger scale including a wider range of tumour types. METHODS: We investigated TC2N mRNA expression, its promoter methylation levels, effects of TC2N transcription on overall patient survival, somatic mutations in TC2N gene and correlation between TC2N mRNA expression and other cancer genes in pan-cancer by using data available from the Cancer Genome Atlas (TCGA) and the Genotype Tissue Expression (GTEx) databases. RESULTS: TC2N mRNA expression was differentially regulated in 9/33 TCGA tumour types. Of these 9 tumours, 5 tumour types (cholangiocarcinoma, ovarian-serous-cystadenocarcinoma, rectal-adenocarcinoma, stomach-adenocarcinoma and thymoma) had significantly higher TC2N mRNA expression while 4 (pheochromocytoma-and-paraganglioma, skin-cutaneous-melanoma, thyroid-carcinoma and uterine-carcinosarcoma) had significantly lower TC2N mRNA expression compared to matched and normal controls. TC2N promoter was hypermethylated in most cancers while hypomethylated in head-and-neck-squamous-cell-carcinoma and kidney-renal-clear-cell carcinoma. TC2N transcription was positively correlated with transcription of several other cancer genes including genes from Myc, cell-cycle, Nrf2, Wnt, PI3K, Hippo, Notch, TGFß and RAS/RTK pathways. Poor prognosis was associated with higher TC2N mRNA levels in pancreatic-adenocarcinoma and brain-lower-grade-glioma and lower TC2N mRNA levels in kidney-renal-clear-cell-carcinoma, mesothelioma, sarcoma and skin-cutaneous melanoma. Functional protein partners of TC2N were identified as STX2, SMEK1, SMEK2, STXBP5, SCARA5, MMRN1, CATSPER2, CATSPERB, CLEC4M and STAB2. Many of these proteins are key players in carcinogenesis of various cancers. Highest pathogenic somatic mutation rates in TC2N were found in skin-cutaneous-melanoma, uterine-corpus-endometrial-carcinoma, colon-endocervical-adenocarcinoma, bladder-urothelial-carcinoma and breast-invasive-carcinoma. CONCLUSION: Our findings unravel several un-explored avenues related to the role of TC2N in tumourigenesis of several cancers, suggesting TC2N as an important player and a potential candidate for tumour-therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Oncogenes , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Proteínas Nucleares/genética
9.
J Exp Clin Cancer Res ; 38(1): 319, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31466523

RESUMO

BACKGROUND: High rates of recurrence and metastasis are the major cause of the poor outcomes for patients with lung cancer. In previous research, we have demonstrated that Tac2-N promotes tumor growth by suppressing p53 signaling in lung cancer. Beyond that, other biological functions and clinical significance of Tac2-N in lung cancer progression are still unknown. METHODS: Tissue microarrays of 272 lung cancer patients were constructed to assess the association of Tac2-N expression and prognosis of lung cancer patients with different clinical stages. The protein expression of Tac2-N in metastatic and non-metastatic specimens were detected by IHC. In vitro migration and invasion and in vivo nude mice metastasis model were used to evaluate the effect of Tac2-N ectopic expression on metastasis capability of lung cancer cells. The downstream signaling pathway of Tac2-N was explored using luciferase reporter assays and WB. RESULTS: The expression of Tac2-N was associated with advanced stages, but not with early stages (P = 0.513). Tac2-N expression is sharply overexpressed in metastatic tumors compared with non-metastatic tumors. In vitro and in vivo assays suggested that Tac2-N facilitated migration and invasion of lung cancer cells in vitro and promoted tumor metastasis in vivo. Mechanistically, Tac2-N increased the degradation of IκB by promoting its phosphorylation, and subsequently activated NF-κB activity by facilitating the nuclear translocation of NF-κB and stimulating the transcription of targets, MMP7 and MMP9. Notably, the C2B domain of Tac2-N was crucial for Tac2-N to activate NF-κB signal. Blockage of NF-κB by shRNA or inhibitor attenuates the function of Tac2-N in the promotion of metastasis. CONCLUSIONS: Our study provided proof of principle to show that Tac2-N serves as a novel oncogene gene and plays an important role in the progression and metastasis of lung cancer.


Assuntos
Neoplasias Pulmonares/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Oncogenes , Transdução de Sinais , Transfecção
10.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445764

RESUMO

Molecular identification and characterization of fear controlling circuitries is a promising path towards developing targeted treatments of fear-related disorders. Three-color in situ hybridization analysis was used to determine whether somatostatin (SOM, Sst), neurotensin (NTS, Nts), corticotropin-releasing factor (CRF, Crf), tachykinin 2 (TAC2, Tac2), protein kinase c-δ (PKC-δ, Prkcd), and dopamine receptor 2 (DRD2, Drd2) mRNA colocalize in male mouse amygdala neurons. Expression and colocalization was examined across capsular (CeC), lateral (CeL), and medial (CeM) compartments of the central amygdala. The greatest expression of Prkcd and Drd2 were found in CeC and CeL. Crf was expressed primarily in CeL, while Sst-, Nts-, and Tac2-expressing neurons were distributed between CeL and CeM. High levels of colocalization were identified between Sst, Nts, Crf, and Tac2 within the CeL, while little colocalization was detected between any mRNAs within the CeM. These findings provide a more detailed understanding of the molecular mechanisms that regulate the development and maintenance of fear and anxiety behaviors.


Assuntos
Núcleo Central da Amígdala/metabolismo , Medo/fisiologia , Neurônios/metabolismo , Animais , Hormônio Liberador da Corticotropina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurotensina/metabolismo , Proteína Quinase C-delta/metabolismo , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Dopamina D2/metabolismo , Somatostatina/metabolismo , Taquicininas/metabolismo
11.
J Neuroendocrinol ; 25(10): 876-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23927071

RESUMO

The neuropeptides kisspeptin (encoded by Kiss1) and RFamide-related peptide-3 (also known as GnIH; encoded by Rfrp) are potent stimulators and inhibitors, respectively, of reproduction. Whether kisspeptin or RFRP-3 might act directly on each other's neuronal populations to indirectly modulate reproductive status is unknown. To examine possible interconnectivity of the kisspeptin and RFRP-3 systems, we performed double-label in situ hybridisation (ISH) for the RFRP-3 receptors, Gpr147 and Gpr74, in hypothalamic Kiss1 neurones of adult male and female mice, as well as double-label ISH for the kisspeptin receptor, Kiss1r, in Rfrp-expressing neurones of the hypothalamic dorsal-medial nucleus (DMN). Only a very small proportion (5-10%) of Kiss1 neurones of the anteroventral periventricular region expressed Gpr147 or Gpr74 in either sex, whereas higher co-expression (approximately 25%) existed in Kiss1 neurones in the arcuate nucleus. Thus, RFRP-3 could signal to a small, primarily arcuate, subset of Kiss1 neurones, a conclusion supported by the finding of approximately 35% of arcuate kisspeptin cells receiving RFRP-3-immunoreactive fibre contacts. By contrast to the former situation, no Rfrp neurones co-expressed Kiss1r in either sex, and Tacr3, the receptor for neurokinin B (NKB; a neuropeptide co-expressed with arcuate kisspeptin neurones) was found in <10% of Rfrp neurones. Moreover, kisspeptin-immunoreactive fibres did not readily appose RFRP-3 cells in either sex, further excluding the likelihood that kisspeptin neurones directly communicate to RFRP-3 neurones. Lastly, despite abundant NKB in the DMN region where RFRP-3 soma reside, NKB was not co-expressed in the majority of Rfrp neurones. Our results suggest that RFRP-3 may modulate a small proportion of kisspeptin-producing neurones in mice, particularly in the arcuate nucleus, whereas kisspeptin neurones are unlikely to have any direct reciprocal actions on RFRP-3 neurones.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Transdução de Sinais , Animais , Feminino , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
12.
Mol Metab ; 1(1-2): 61-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24024119

RESUMO

Leptin action in the brain signals the repletion of adipose energy stores, suppressing feeding and permitting energy expenditure on a variety of processes, including reproduction. Leptin binding to its receptor (LepR-b) promotes the tyrosine phosphorylation of three sites on LepR-b, each of which mediates distinct downstream signals. While the signals mediated by LepR-b Tyr1138 and Tyr985 control important aspects of energy homeostasis and LepR-b signal attenuation, respectively, the role of the remaining LepR-b phosphorylation site (Tyr1077) in leptin action has not been studied. To examine the function of Tyr1077, we generated a "knock-in" mouse model expressing LepR-b (F1077), which is mutant for LepR-b Tyr1077. Mice expressing LepR-b (F1077) demonstrate modestly increased body weight and adiposity. Furthermore, females display impairments in estrous cycling. Our results suggest that signaling by LepR-b Tyr1077 plays a modest role in the control of metabolism by leptin, and is an important link between body adiposity and the reproductive axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA