Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Pharm ; 21(7): 3281-3295, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848439

RESUMO

Renal fibrosis plays a key role in the pathogenesis of chronic kidney disease (CKD), in which the persistent high expression of transforming growth factor ß1 (TGF-ß1) and α-smooth muscle actin (α-SMA) contributes to the progression of CKD to renal failure. In order to improve the solubility, bioavailability, and targeting of tanshinone IIA (Tan IIA), a novel targeting material, aminoethyl anisamide-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphate ethanolamine (AEAA-PEG-DSPE, APD) modified Tan IIA liposomes (APD-Tan IIA-L) was constructed. An animal model of glomerulonephritis induced by doxorubicin in BALB/c mice was established. APD-Tan IIA-L significantly decreased blood urea nitrogen and serum creatinine (SCr), and the consequences of renal tissue oxidative stress indicators showed that APD-Tan IIA-L downregulated malondialdehyde, upregulated superoxide dismutase, catalase, and glutathione peroxidase. Masson's trichrome staining showed that the deposition of collagen in the APD-Tan IIA-L group decreased significantly. The pro-fibrotic factors (fibronectin, collagen I, TGF-ß1, and α-SMA) and epithelial-mesenchymal transition marker (N-cadherin) were significantly inhibited by APD-Tan IIA-L. By improving the microenvironment of fibrotic kidneys, APD-Tan IIA-L attenuated TGF-ß1-induced excessive proliferation of fibroblasts and alleviated oxidative stress damage to the kidney, providing a new strategy for the clinical treatment of renal fibrosis.


Assuntos
Abietanos , Doxorrubicina , Fibrose , Glomerulonefrite , Rim , Lipossomos , Camundongos Endogâmicos BALB C , Animais , Camundongos , Lipossomos/química , Abietanos/farmacologia , Abietanos/química , Fibrose/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Fator de Crescimento Transformador beta1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Modelos Animais de Doenças , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/induzido quimicamente
2.
Artigo em Inglês | MEDLINE | ID: mdl-37991600

RESUMO

BACKGROUND: Myocardial infarction remains a disease with high morbidity and death rate among cardiovascular diseases. Macrophages are abundant immune cells in the heart. Under different stimulatory factors, macrophages can differentiate into different phenotypes and play a dual pro-inflammatory and anti-inflammatory role. Therefore, a potential strategy for the treatment of myocardial infarction is to regulate the energy metabolism of macrophages and thereby regulate the polarization of macrophages. Tan IIA is an effective liposolubility component extracted from the root of Salvia miltiorrhiza and plays an important role in the treatment of cardiovascular diseases. On this basis, this study proposed whether Tan IIA could affect phenotype changes by regulating energy metabolism of macrophages, and thus exert its potential in the treatment of MI. METHODS: Establishing a myocardial infarction model, Tan IIA was given for 3 days and 7 days for intervention. Cardiac function was detected by echocardiography, and cardiac pathological sections of each group were stained with HE and Masson to observe the inflammatory cell infiltration and fibrosis area after administration. The expression and secretion of inflammatory factors in heart tissue and serum of each group, as well as the proportion of macrophages at the myocardial infarction site, were detected using RT-PCR, ELISA, and immunofluorescence. The mitochondrial function of macrophages was evaluated using JC-1, calcium ion concentration detection, reactive oxygen species detection, and mitochondrial electron microscopic analysis. Mechanically, single-cell transcriptome data mining, cell transcriptome sequencing, and molecular docking technology were used to anchor the target of Tan IIA and enrich the pathways to explore the mechanism of Tan IIA regulating macrophage energy metabolism and phenotype. The target of Tan IIA was further determined by gene knockdown and overexpression assay. RESULTS: The intervention of Tan IIA can improve the cardiac function, inflammatory cell infiltration and fibrosis after MI, reduce the expression of inflammatory factors in the heart, enhance the secretion of anti-inflammatory factors, increase the proportion of M2-type macrophages, reduce the proportion of M1-type macrophages, and promote tissue repair, suggesting that Tan IIA has pharmacological effects in the treatment of MI. In terms of mechanism, RNA-seq results suggest that the phenotype of macrophages is strongly correlated with energy metabolism, and Tan IIA can regulate the PGK1-PDHK1 signaling pathway, change the energy metabolism mode of macrophages, and then affect its phenotype. CONCLUSION: Tan IIA regulates the energy metabolism of macrophages and changes its phenotype through the PGK1-PDHK1 signaling pathway, thus playing a role in improving MI.

3.
Environ Toxicol ; 37(7): 1618-1628, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35243748

RESUMO

It's known that APAP overdose often leads to hepatotoxicity and nephrotoxicity. In the present study, we investigated the preventative effect of Tan IIA on APAP-induced nephrotoxicity. Mice were orally administrated with Tan IIA (10 or 30 mg/kg/day) for 1 week and subsequently gavaged with 200 mg/kg of APAP. Tan IIA reduced APAP-induced nephrotoxicity as evidenced by histopathological evaluation and serum creatinine levels. Tan IIA pretreatment promoted the efflux of the toxic intermediate metabolite N-acetyl-p-benzoquinone imine (NAPQI), thus reduced its injury to mouse kidney. After Tan IIA pretreatment, a remarkable increase in mRNA and protein expression of Nrf2 and its target genes Mrp2 and Mrp4 was observed in Nrf2+/+ mice kidneys, however, no obvious change of Mrp2 and Mrp4 mRNA and protein expression was detected in Nrf2-/- mice kidneys. HK-2 cells were used for exploring the roles of Tan IIA in the Nrf2-MRPs pathway in vitro. Consistently, Tan IIA up-regulated the Nrf2-MRPs pathway and promoted the nuclear Nrf2 accumulation in HK-2 cells. Collectively, our findings suggested that Tan IIA facilitated the clearance of toxic intermediate metabolite NAPQI from the kidney through upregulation of the Nrf2-MRP2/4 pathway, thereby, performing preventive effects against APAP-induced nephrotoxicity.


Assuntos
Abietanos , Acetaminofen , Nefropatias , Animais , Camundongos , Abietanos/farmacologia , Acetaminofen/farmacologia , Acetaminofen/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
J Recept Signal Transduct Res ; 40(6): 591-598, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32496906

RESUMO

Tanshinone IIA (Tan IIA) is a member of the major lipophilic components extracted from the root of Salvia miltiorrhiza Bunge. Osteosarcomas are primary malignant tumors of bone. The aim of our study is to explore the role of Tan IIA in osteosarcomas survival, migration, and proliferation. MG63 osteosarcoma cell line was cultured in vitro and treated with different concentrations of Tan IIA. Then, ELISA, immunofluorescence, qPCR, western blots, and pathway analysis were conducted to verify whether Tan II modulated osteosarcoma survival, migration, and proliferation through the AMPK/Nrf2 signaling pathway. Our results indicated that Tan IIA dose-dependently inhibited MG63 osteosarcoma cell survival, migration, and proliferation. Mechanistically, Tan IIA reduced cell viability and inhibited the transcriptions of migratory factors. In addition, the number of proliferative MG63 osteosarcoma cell was also reduced by Tan IIA. Molecular investigations demonstrated that Tan IIA treatment caused a drop in the transcriptions and activities of AMPK and Nrf2. Interestingly, knockdown of AMPK and Nrf2 markedly attenuated MG63 osteosarcoma cell survival, migration, and proliferation. Altogether, our results indicate that Tan IIA could be used as an effective anticancer drug to control osteosarcoma proliferation through affecting its survival, migration, and proliferation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Abietanos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Osteossarcoma/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células , Humanos , Fator 2 Relacionado a NF-E2/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células Tumorais Cultivadas
5.
J Recept Signal Transduct Res ; 39(2): 134-145, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31354004

RESUMO

Context: Epidermal cells play an important role in regulating the regeneration of skin after burns and wounds. Objective: The aim of our study is to explore the role of Tanshinone IIA (Tan IIA) in the apoptosis of epidermal HaCaT cells induced by H2O2, with a focus on mitochondrial homeostasis and inverted formin-2 (INF2). Materials and methods: Cellular viability was determined using the MTT assay, TUNEL staining, western blot analysis and LDH release assay. Adenovirus-loaded INF2 was transfected into HaCaT cells to overexpress INF2 in the presence of Tan IIA treatment. Mitochondrial function was determined using JC-1 staining, mitochondrial ROS staining, immunofluorescence and western blotting. Results: Oxidative stress promoted the death of HaCaT cells and this effect could be reversed by Tan IIA. At the molecular levels, Tan IIA treatment sustained mitochondrial energy metabolism, repressed mitochondrial ROS generation, stabilized mitochondrial potential, and blocked the mitochondrial apoptotic pathway. Furthermore, we demonstrated that Tan IIA modulated mitochondrial homeostasis via affecting INF2-related mitochondrial stress. Overexpression of INF2 could abolish the protective effects of Tan IIA on HaCaT cells viability and mitochondrial function. Besides, we also reported that Tan IIA regulated INF2 expression via the ERK pathway; inhibition of this pathway abrogated the beneficial effects of Tan IIA on HaCaT cells survival and mitochondrial homeostasis. Conclusions: Overall, our results indicated that oxidative stress-mediated HaCaT cells apoptosis could be reversed by Tan IIA treatment via reducing INF2-related mitochondrial stress in a manner dependent on the ERK signaling pathway.


Assuntos
Abietanos/farmacologia , Queimaduras/tratamento farmacológico , Forminas/genética , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Queimaduras/genética , Queimaduras/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Células Epidérmicas/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia
7.
Oncol Lett ; 23(6): 184, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35527783

RESUMO

Aerobic glycolysis plays a key role in cancer cell metabolism and contributes to tumorigenesis, including that of non-small cell lung cancer (NSCLC). Tanshinone IIA (Tan IIA), an active compound of Salvia miltiorrhiza, exhibits antitumor properties. Multiple mechanisms are involved in the antitumor action of Tan IIA in lung cancer, such as inhibiting cell growth, promoting cell apoptosis and influencing cellular metabolism. However, the effects of Tan IIA on NSCLC cells and its mechanisms of action remain unclear. The present study shows Tan IIA dose-dependently attenuated the growth of NSCLC cells and in vitro in a dose-dependent manner. Moreover, Tan IIA markedly decreased the ATP level, glucose uptake and lactate production in the NSCLC cells in vitro. Tan IIA also inhibited tumor growth in a xenograft model in vivo. Mechanically, Tan IIA treatment decreased sine oculis homeobox homolog 1 (SIX1) mRNA and protein levels, thus leading to the downregulation of pyruvate kinase isozyme M2, hexokinase 2 and lactate dehydrogenase A (LDHA) expression in A549 cells. SIX1 knockdown with small interfering-RNA inhibited glycolysis in NSCLC cells, suggesting that SIX1 plays a role in the antitumor effect of Tan IIA on NSCLC cells. More importantly, it was demonstrated that SIX1 expression was stimulated in patients with NSCLC and was positively correlated with the LDH serum level. Finally, SIX1 low expression levels predicted the poor prognosis of patients with NSCLC. In conclusion, the present study showed that Tan IIA functioned as an anti-glycolysis agent in NSCLC cells by downregulating SIX1 expression and inhibiting cell proliferation.

8.
Regen Ther ; 21: 560-573, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475023

RESUMO

Introduction: Bone marrow mesenchymal stem cells (BMSCs) are a promising cell type for tissue engineering, however, the application of BMSCs is largely hampered by the limited number harvested from bone marrow cells. The methods or strategies that focused on promoting the capacity of BMSCs expansion ex vivo become more and more important. Tanshinone IIA (Tan IIA), the main active components of Danshen, has been found to promote BMSCs proliferation, but the underlying mechanism is still unclear. The aim of this study is to explore the effect and underlying mechanism of Tan IIA on the expansion capacity of hBMSCs ex vivo. Methods: In this present study, the effect of Tan IIA on the expansion capacity of BMSCs from human was investigated, and quantitative proteome analysis was applied furtherly to identify the differentially expressed proteins (DEPs) and the molecular signaling pathways in Tan IIA-treated hBMSCs. Finally, molecular biology skills were employed to verify the proposed mechanism of Tan IIA in promoting hBMSCs expansion. Results: The results showed that a total of 84 DEPs were identified, of which 51 proteins were upregulated and 33 proteins were downregulated. Besides, Tan IIA could promote hBMSCs proliferation by regulating the progression of S phase via increasing the release of fibroblast growth factor 2 (FGF2), FGF-mediated PI3K/AKT signaling pathways may play an important role in Tan IIA's effect on hBMSCs expansion. Conclusions: This study employed molecular biology skills combined with quantitative proteome analysis, to some extent, clarified the mechanism of Tan IIA's effect on promoting hBMSCs proliferation, and will give a hint that Tan IIA may have the potential to be used for BMSCs applications in cell therapies in the future.

9.
Biomed Pharmacother ; 137: 111404, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761617

RESUMO

Tanshinone IIA (Tan IIA) is the most abundant lipid-soluble component in Salvia miltiorrhiza. Both Tan IIA and its derivatives including Sodium tanshinone IIA sulfonate (STS) have been widely used in clinic due to their proved anti-inflammation, anti-oxidation, and anti-fibrosis functions. Recently, combinations containing Tan IIA and active components have attracted intensive interest in fibrosis. Multiple studies have been conducted to attempt to decipher the mechanisms of this traditional Chinese medicine and found that Tan IIA can attenuate fibrosis through different pathways such as Smad2/3, NF-κB, Nrf2, E2F and snail/twist axis. However, some of the studies were contradictory and confusing. Therefore, it was important to develop an easy-to-access reference for clinic use. In this study, we reviewed the pharmacological mechanisms, pharmacokinetics, and toxicology of Tan IIA and its derivatives in the treatment of fibrosis and introduced the cutting-edge new formulation of Tan IIA compound.


Assuntos
Abietanos/uso terapêutico , Fibrose/tratamento farmacológico , Abietanos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Salvia miltiorrhiza , Transdução de Sinais/efeitos dos fármacos
10.
Front Oncol ; 11: 670798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905466

RESUMO

[This corrects the article DOI: 10.3389/fonc.2020.01756/full.].

11.
IBRO Neurosci Rep ; 10: 18-30, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33842909

RESUMO

BACKGROUND: The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model. RESULTS: Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm3) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm3) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs. CONCLUSION: The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.

12.
Front Oncol ; 10: 1756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014864

RESUMO

Cisplatin (DDP) represents one of the common drugs used for esophageal squamous cell carcinoma (ESCC), but side effects associated with DDP and drug resistance lead to the failure of treatment. This study aimed to understand whether tanshinone IIA (tan IIA) and DDP could generate a synergistic antitumor effect on ESCC cells. Tan IIA and DDP are demonstrated to restrain ESCC cell proliferation in a time- and dose-dependent mode. Tan IIA and DDP at a ratio of 2:1 present a synergistic effect on ESCC cells. The combination suppresses cell migration and invasion abilities, arrests the cell cycle, and causes apoptosis in HK and K180 cells. Molecular docking indicates that tan IIA and DDP could be docked into active sites with the tested proteins. In all treated groups, the expression levels of E-cadherin, ß-catenin, Bax, cleaved caspase-9, P21, P27, and c-Fos were upregulated, and the expression levels of fibronectin, vimentin, Bcl-2, cyclin D1, p-Akt, p-ERK, p-JNK, P38, COX-2, VEGF, IL-6, NF-κB, and c-Jun proteins were downregulated. Among these, the combination induced the most significant difference. Our results suggest that tan IIA could be a novel treatment for combination therapy for ESCC.

13.
Front Pharmacol ; 11: 568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499694

RESUMO

Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease in which activated RA fibroblast-1ike synoviocytes (RA-FLSs) are one of the main factors responsible for inducing morbidity. Previous reports have shown that RA-FLSs have proliferative features similar to cancer cells, in addition to causing cartilage erosion that eventually causes joint damage. Thus, new therapeutic strategies and drugs that can effectively contain the abnormal hyperplasia of RA-FLSs and restrain RA development are necessary for the treatment of RA. Tanshinone IIA (Tan IIA), one of the main phytochemicals isolated from Salvia miltiorrhiza Bunge, is capable of promoting RA-FLS apoptosis and inhibiting arthritis in an AIA mouse model. In addition, RA patients treated at our clinic with Tan IIA showed significant improvements in their clinical symptoms. However, the details of the molecular mechanism by which Tan IIA effects RA are unknown. To clarify this mechanism, we evaluated the antiproliferative and inhibitory effects of proinflammatory factor production caused by Tan IIA to RA-FLSs. We demonstrated that Tan IIA can restrict the proliferation, migration, and invasion of RA-FLSs in a time- and dose-dependent manner. Moreover, Tan IIA effectively suppressed the increase in mRNA expression of some matrix metalloproteinases and proinflammatory factors induced by TNF-α in RA-FLSs, resulting in inflammatory reactivity inhibition and blocking the destruction of the knee joint. Through the integration of network pharmacology analyses with the experimental data obtained, it is revealed that the effects of Tan IIA on RA can be attributed to its influence on different signaling pathways, including MAPK, AKT/mTOR, HIF-1, and NF-kB. Taken together, these data suggest that the compound Tan IIA has great therapeutic potential for RA treatment.

14.
Free Radic Biol Med ; 152: 52-60, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32131025

RESUMO

Although Tanshinone IIA (Tan IIA) has been associated with inflammation, oxidative stress and apoptosis, the effects of Tan IIA on lung blast injury remain uncertain. In this study, we explored the effects of Tan IIA on lung blast injury, studied its possible molecular mechanisms. Fifty C57BL/6 mice were randomly divided into the control, blast, blast + Tan IIA, blast + LY294002 (a PI3K inhibitor), or blast + Tan IIA + LY294002 groups. Serum and lung samples were collected 48 h after blast injury. The data showed that Tan IIA significantly inhibited blast-induced increases in the lung weight/body weight and wet/dry (W/D) weight ratios, decreased the CD44-and CD163-positive inflammatory cell infiltration in the lungs, reduced the IL-1ß, TNF-α and IL-6 expression, and enhanced IL-10 expression. Tan IIA also significantly alleviated the increases in MDA5 and IRE-a and the decrease in SOD-1 and reversed the low Bcl-2 expression and the high Bax and Caspase-3 expressions. Additionally, Tan IIA significantly decreased p-PI3K and p-Akt expression and increased p-FoxO1 expression. More importantly, both LY294002 and Tan IIA pretreatment markedly protected against blast-induced inflammation, oxidative stress and apoptosis in lung blast injury. These results suggest that Tan IIA protects against lung blast injury, which may be partly mediated by inhibiting the PI3K/Akt/FoxO1 signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Abietanos , Animais , Apoptose , Proteína Forkhead Box O1/genética , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
Aging (Albany NY) ; 11(21): 9719-9737, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711043

RESUMO

Tanshinone IIA (TanIIA)-an active constituent of Salvia miltiorrhiza, a traditional Chinese medicinal plant-is known to have blood circulation promotion and anti-tumor properties. Tan IIA can induce tumor cell death and inhibit tumor growth. However, the functions and underling molecular mechanisms of Tan IIA action on human liver cancer cells remain poorly understand. In this study, we found that Tanshinone IIA mediates SMAD7-YAP interaction to induce liver cancer cell apoptosis and inhibit cell growth and migration by inactivating the transforming growth factor beta (TGF-ß) signaling pathway. Our findings showed that the Tan IIA-SMAD7-YAP regulatory network might be an effective strategy for liver cancer treatment.


Assuntos
Abietanos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Salvia miltiorrhiza , Proteína Smad7/metabolismo , Abietanos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Antineoplásicos Fitogênicos/farmacologia , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Fitoterapia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP
16.
Am J Transl Res ; 11(7): 4203-4213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396329

RESUMO

This study aimed to investigate the molecular mechanisms underlying the effect of Tashinone IIA (Tan) on the treatment of ischemic vertigo. Sprague-Dawley (SD) male rats were divided into a SHAM group, a MODEL group, a MODEL+PBS group, a MODEL+Tan (10 mg/kg) group, a MODEL+Tan (20 mg/kg) group, a MODEL+Tan (40 mg/kg) group and a MODEL+Tan (80 mg/kg) group. The escape latency was observed among different groups of rats, while the production of NO/cGMP and the expression of BKCa were measured in vivo and in vitro by H&E staining, Western Blot and IHC assays. While the rats with ischemic vertigo showed prolonged escape latency, the treatment by Tan (40 mg/kg and up) shortened the escape latency in rats with ischemic vertigo. Moreover, the reduced production of NO/cGMP and expression of BKCa protein in the MODEL group were increased by a certain extent upon the treatment of 40 mg/kg or 80 mg/kg Tan. H&E staining of MVN neuron cells collected from different rat groups also validated the positive effects of Tan on the repair of damaged MVN neuron cells. Moreover, the above results were also validated in vitro, as the cells treated with 5 ug/ml and 10 ug/ml Tan increased the levels of NO/cGMP production and BKCa protein expression. At a certain dose, Tan could increase the production of NO and cGMP as well as the expression of BKCa, which would subsequently aid the treatment of ischemic vertigo.

17.
Curr Pharm Biotechnol ; 20(5): 422-432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947667

RESUMO

BACKGROUND: Tanshinone IIA (Tan IIA) and Omentin-1 have a protective role in the cardiovascular system. However, if and how Tan IIA and Omentin-1 regulate cholesterol metabolism in macrophages has not been fully elucidated. OBJECTIVE: To investigate the possible mechanisms of Tan IIA and Omentin-1 on preventing macrophage cholesterol accumulation and atherosclerosis development. METHODS: The effect of Tan IIA on the protein and mRNA levels of Omentin-1 and ATP-binding cassette transporter A1 (ABCA1) in macrophages was examined by Western blot and qRT-PCR assay, respectively. Cholesterol efflux was assessed by liquid scintillation counting (LSC). Cellular lipid droplet was measured by Oil Red O staining, and intracellular lipid content was detected by high performance liquid chromatography (HPLC). In addition, the serum lipid profile of apoE-/- mice was measured by enzymatic method. The size of atherosclerotic lesion areas and content of lipids and collagen in the aortic of apoE-/- mice were examined by Sudan IV, Oil-red O, and Masson staining, respectively. RESULTS: Tan IIA up-regulated expression of Omentin-1 and ABCA1 in THP-1 macrophages, promoting ABCA1-mediated cholesterol efflux and consequently decreasing cellular lipid content. Consistently, Tan IIA increased reverse cholesterol transport in apoE-/- mice. Plasma levels of high-density lipoprotein cholesterol (HDL-C), ABCA1 expression and atherosclerotic plaque collagen content were increased while plasma levels of low-density lipoprotein cholesterol (LDL-C) and atherosclerotic plaque sizes were reduced in Tan IIA-treated apoE-/- mice. These beneficial effects were, however, essentially blocked by knockdown of Omentin-1. CONCLUSION: Our results revealed that Tan IIA promotes cholesterol efflux and ameliorates lipid accumulation in macrophages most likely via the Omentin-1/ABCA1 pathway, reducing the development of aortic atherosclerosis.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Abietanos/farmacologia , Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Lectinas/metabolismo , Macrófagos/efeitos dos fármacos , Abietanos/uso terapêutico , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Regulação para Cima
18.
Cell Stress Chaperones ; 24(5): 991-1003, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31388827

RESUMO

Cardiac microvascular ischemia-reperfusion (IR) injury has been a neglected topic in recent decades. In the current study, we investigated the mechanism underlying microvascular IR injury, with a focus on mitochondrial homeostasis. We also explored the protective role of tanshinone IIA (Tan IIA) in microvascular protection in the context of IR injury. Through animal studies and cell experiments, we demonstrated that IR injury mediated microvascular wall destruction, lumen stenosis, perfusion defects, and cardiac microvascular endothelial cell (CMEC) apoptosis via inducing mitochondrial damage. In contrast, Tan IIA administration had the ability to sustain CMEC viability and microvascular homeostasis, finally attenuating microvascular IR injury. Function studies have confirmed that the SIRT1/PGC1α pathway is responsible for the microvascular protection from the Tan IIA treatment. SIRT1 activation by Tan IIA sustained the mitochondrial potential, alleviated the mitochondrial pro-apoptotic factor leakage, reduced the mPTP opening, and blocked mitochondrial apoptosis, providing a survival advantage for CMECs and preserving microvascular structure and function. By comparison, inhibiting SIRT1 abrogated the beneficial effects of Tan IIA on mitochondrial function, CMEC survival, and microvascular homeostasis. Collectively, this study indicated that Tan IIA should be considered a microvascular-protective drug that alleviates acute cardiac microcirculation IR injury via activating the SIRT1/PGC1α pathway and thereby blocking mitochondrial damage.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo
19.
Biomed Pharmacother ; 108: 1658-1669, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372868

RESUMO

IL-2-based therapy is a promising tool to treat colorectal cancer, but drug resistance always occurs in clinical practice. Mitochondrial fission is a novel target to modulate cancer development and progression. The aim of our study is to explore the effect of IL-2 combined with Tan IIA on SW480 colorectal cancer cell apoptosis in vitro and to determine whether IL-2/Tan IIA cotreatment could reduce SW480 cell viability via activating mitochondrial fission. The results indicated that Tan IIA increased IL-2-mediated cell death in SW480 colorectal cancer cells, and this effect was also accompanied with a reduction in cell proliferation. Functional investigations demonstrated that Tan IIA/IL-2 cotreatment enhanced INF2-related mitochondrial fission. Excessive mitochondrial division induced mitochondrial oxidative stress, mitochondrial energy metabolism disorder and mitochondrial apoptosis in SW480 cells. Inhibition of mitochondrial fission attenuated the antitumor effect of Tan IIA/IL-2 cotreatment on SW480 cell apoptosis. Further, we demonstrated that Tan IIA/IL-2 combination therapy controlled INF2-related mitochondrial fission via the Mst1-Hippo pathway. Moreover, Mst1 knockdown abrogated Tan IIA/IL-2-activated mitochondrial fission. Altogether, our results demonstrated that Tan IIA enhances the therapeutic efficiency of IL-2-mediated SW480 colorectal cancer cell apoptosis via promoting INF2-related mitochondrial fission and activating the Mst1-Hippo pathway.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Fator de Crescimento de Hepatócito/metabolismo , Interleucina-2/farmacologia , Proteínas dos Microfilamentos/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Forminas , Via de Sinalização Hippo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Acta Pharm Sin B ; 5(6): 554-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26713270

RESUMO

The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5-80 µmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π-π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA