Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 112(6): 1003-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24026439

RESUMO

BACKGROUND AND AIMS: Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta. METHODS: Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine-glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions. KEY RESULTS AND CONCLUSIONS: The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described.


Assuntos
Organelas/ultraestrutura , Proantocianidinas/metabolismo , Traqueófitas/metabolismo , Animais , Catequina/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Clorofila/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cromatografia Líquida de Alta Pressão , Ebenaceae/química , Ebenaceae/metabolismo , Ebenaceae/ultraestrutura , Frutas/química , Frutas/metabolismo , Frutas/ultraestrutura , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Ginkgo biloba/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Organelas/química , Organelas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Polimerização , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Traqueófitas/química , Traqueófitas/ultraestrutura , Vacúolos/química , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vitis/química , Vitis/metabolismo , Vitis/ultraestrutura
2.
J Agric Food Chem ; 68(10): 2880-2890, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31603670

RESUMO

As a result of the high variability of fruit properties in the European plum Prunus domestica, a histochemical analysis of fruits at different stages of development was performed to understand the ripening process in cv. 'Colora' (yellow-red skinned) and cv. 'Topfive' (purple skinned). Histological analysis showed that carotenoids in the fruit had two different origins. In the fruit flesh, they derived from chloroplasts that turned into chromoplasts, whereas carotenoids in the fruit skin derived probably from proplastids. Flavan-3-ols and proanthocyanidins showed differential localization during ripening. They were visible in the vacuole in different fruit tissues or organized in tannosomes in the fruit flesh. Tanninoplasts were observed only in hypodermal cells of 'Colora'. Toward maturity, anthocyanins were detected in the epidermis and later in the hypodermis of both cultivars. The study forms a basis for the analysis of the biosynthesis of secondary metabolites in European plums and their biological effects.


Assuntos
Antocianinas/análise , Flavonoides/análise , Frutas/química , Proantocianidinas/análise , Prunus domestica/crescimento & desenvolvimento , Cloroplastos/química , Frutas/crescimento & desenvolvimento , Histologia , Plastídeos/química , Prunus domestica/química , Coloração e Rotulagem , Vacúolos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA