Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 733: 150693, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39326257

RESUMO

The GRAS gene is an important specific transcription factor in plants, which has multiple functions such as signal transduction, cell morphogenesis and stress response. Although it is widely distributed in plants and has been characterized in several species, however, information about the GRAS family in Taraxacum kok-saghyz Rodin remains unknown. Here, TkGRAS family members were identified and analyzed for molecular characterization, tissue expression patterns and induced expression patterns. A total of 64 GRAS family members were identified at the genome-wide level, which could be categorized into 14 subfamilies by phylogenetic analysis. Most TkGRASs were intronless and had essentially the same gene structure in the same subfamily. Meanwhile, there were multiple response elements found in the promoters of TkGRASs. Tissue expression patterns and induced expression patterns showed that TkGRASs were expressed in different tissues and induced by abiotic stresses. Notably, the expression level of TkGRAS20 was up-regulated under different stresses, suggesting that this gene plays a pivotal role in the stress response. TkGRAS20 showed transcriptional activity in yeast cells and localized in the nucleus and plasma membrane. In conclusion, our study provided valuable insights into the genetic mechanisms underlying stress tolerance in TKS, and several key genes may be used for genetic breeding to improve stress tolerance.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Taraxacum , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes de Plantas , Regiões Promotoras Genéticas , Perfilação da Expressão Gênica
2.
Planta ; 260(4): 88, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251530

RESUMO

MAIN CONCLUSION: Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine TkOSCs were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. TkOSC promoter regions contain cis-acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed TkOSC1, TkOSC4, TkOSC5, TkOSC6, TkOSC7, TkOSC8 and TkOSC9 might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.


Assuntos
Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares , Filogenia , Borracha , Taraxacum , Taraxacum/genética , Taraxacum/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Borracha/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética
3.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999970

RESUMO

Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.


Assuntos
Acetatos , Ciclopentanos , Etilenos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Filogenia , Proteínas de Plantas , Taraxacum , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Taraxacum/genética , Taraxacum/metabolismo , Taraxacum/efeitos dos fármacos , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/farmacologia , Genoma de Planta , Estudo de Associação Genômica Ampla
4.
BMC Genomics ; 24(1): 13, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627555

RESUMO

BACKGROUND: Taraxacum kok-saghyz Rodin (TKS) is a promising commercial alternative natural rubber (NR) yielding plant. Cultivating TKS with a high NR content is an important breeding target, and developing molecular markers related to NR content can effectively accelerate the breeding process of TKS. RESULTS: To construct a high-density SNP genetic map and uncover genomic regions related to the NR content in TKS, an F1 mapping population of TKS was constructed by crossing two parents (l66 and X51) with significant differences in NR contents. The NR content of the F1 plants ranged from 0.30 to 15.14% and was distributed normally with a coefficient of variation of 47.61%, indicating quantitative trait inheritance. Then, employing whole-genome resequencing (WGR), a TKS genetic linkage map of 12,680 bin markers comprising 322,439 SNPs was generated. Based on the genetic map and NR content of the F1 population, six quantitative trait loci (QTLs) for NR content with LOD > 4.0 were identified on LG01/Chr01 and LG06/Chr06. Of them, the 2.17 Mb genomic region between qHRC-C6-1 and qHRC-C6-2 on ChrA06, with 65.62% PVE in total, was the major QTL region. In addition, the six QTLs have significant additive genetic effects on NR content and could be used to develop markers for marker-assisted selection (MAS) in TKS with a high NR content. CONCLUSION: This work constructed the first high-density TKS genetic map and identified the QTLs and genomic regions controlling the NR content, which provides useful information for fine mapping, map-based cloning, and MAS in TKS.


Assuntos
Locos de Características Quantitativas , Taraxacum , Borracha , Taraxacum/genética , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fenótipo , Ligação Genética
5.
J Sep Sci ; 46(19): e2201041, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37609805

RESUMO

Taraxacum kok-saghyz Rodin (TKS) has abundant natural rubber in its root and the molecular weight of its natural rubber is higher than that in Hevea brasiliensis. Thus, TKS is an excellent alternative for the commercial production of natural rubber. The content and molecular weight of natural rubber are two qualitative indicators. Efficient determination for both indicators is still a challenge. In this study, we developed a method to simultaneously determine the content and molecular weight of natural rubber in TKS with pyrolysis-gas chromatography-mass spectrometry. The content of natural rubber was quantified by internal standard method. We optimized the pyrolysis temperature and chromatographic method during content determination. The limits of detection and quantification were 0.47 and 1.56 µg, respectively. In addition, the arachidonic acid methyl ester, an unsaturated fatty acid proposed from the α-end group of natural rubber, was quantified to obtain the number of natural rubber polymers. Based on the content and the polymer number, we also quantified the molecular weight of natural rubber. Thus, the content and molecular weight of natural rubber were simultaneously determined in TKS. Our study provides a new perspective for the high throughput analysis of natural rubber.

6.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446175

RESUMO

MADS-box transcription regulators play important roles in plant growth and development. However, very few MADS-box genes have been isolated in the genus Taraxacum, which consists of more than 3000 species. To explore their functions in the promising natural rubber (NR)-producing plant Taraxacum kok-saghyz (TKS), MADS-box genes were identified in the genome of TKS and the related species Taraxacum mongolicum (TM; non-NR-producing) via genome-wide screening. In total, 66 TkMADSs and 59 TmMADSs were identified in the TKS and TM genomes, respectively. From diploid TKS to triploid TM, the total number of MADS-box genes did not increase, but expansion occurred in specific subfamilies. Between the two genomes, a total of 11 duplications, which promoted the expansion of MADS-box genes, were identified in the two species. TkMADS and TmMADS were highly conserved, and showed good collinearity. Furthermore, most TkMADS genes exhibiting tissue-specific expression patterns, especially genes associated with the ABCDE model, were preferentially expressed in the flowers, suggesting their conserved and dominant functions in flower development in TKS. Moreover, by comparing the transcriptomes of different TKS lines, we identified 25 TkMADSs related to biomass formation and 4 TkMADSs related to NR content, which represented new targets for improving the NR yield of TKS.


Assuntos
Borracha , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Genoma , Transcriptoma , Evolução Biológica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
7.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298239

RESUMO

Taraxacum kok-saghyz Rodin (TKS) has great potential as an alternative natural-rubber (NR)-producing crop. The germplasm innovation of TKS still faces great challenges due to its self-incompatibility. Carbon-ion beam (CIB) irradiation is a powerful and non-species-specific physical method for mutation creation. Thus far, the CIB has not been utilized in TKS. To better inform future mutation breeding for TKS by the CIB and provide a basis for dose-selection, adventitious buds, which not only can avoid high levels of heterozygosity, but also further improve breeding efficiency, were irradiated here, and the dynamic changes of the growth and physiologic parameters, as well as gene expression pattern were profiled, comprehensively. The results showed that the CIB (5-40 Gy) caused significant biological effects on TKS, exhibiting inhibitory effects on the fresh weight and the number of regenerated buds and roots. Then,15 Gy was chosen for further study after comprehensive consideration. CIB-15 Gy resulted in significant oxidative damages (hydroxyl radical (OH•) generation activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and malondialdehyde (MDA) content) and activated the antioxidant system (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) of TKS. Based on RNA-seq analysis, the number of differentially expressed genes (DEGs) peaked at 2 h after CIB irradiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DNA-replication-/repair- (mainly up-regulated), cell-death- (mainly up-regulated), plant-hormone- (auxin and cytokinin, which are related to plant morphogenesis, were mainly down-regulated), and photosynthesis- (mainly down-regulated) related pathways were involved in the response to the CIB. Furthermore, CIB irradiation can also up-regulate the genes involved in NR metabolism, which provides an alternative strategy to elevate the NR production in TKS in the future. These findings are helpful to understand the radiation response mechanism and further guide the future mutation breeding for TKS by the CIB.


Assuntos
Taraxacum , Transcriptoma , Taraxacum/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Borracha/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142183

RESUMO

WRKY transcription factors present unusual research value because of their critical roles in plant physiological processes and stress responses. Taraxacum kok-saghyz Rodin (TKS) is a perennial herb of dandelion in the Asteraceae family. However, the research on TKS WRKY TFs is limited. In this study, 72 TKS WRKY TFs were identified and named. Further comparison of the core motifs and the structure of the WRKY motif was analyzed. These TFs were divided into three groups through phylogenetic analysis. Genes in the same group of TkWRKY usually exhibit a similar exon-intron structure and motif composition. In addition, virtually all the TKS WRKY genes contained several cis-elements related to stress response. Expression profiling of the TkWRKY genes was assessed using transcriptome data sets and Real-Time RT-PCR data in tissues during physiological development, under abiotic stress and hormonal treatments. For instance, the TkWRKY18, TkWRKY23, and TkWRKY38 genes were significantly upregulated during cold stress, whereas the TkWRKY21 gene was upregulated under heat-stress conditions. These results could provide a basis for further studies on the function of the TKS WRKY gene family and genetic amelioration of TKS germplasm.


Assuntos
Taraxacum , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Taraxacum/genética , Taraxacum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684485

RESUMO

The roots of Taraxacum kok-saghyz Rodin (TKS) are well-known and valued for their rubber-producing ability. Therefore, research on the analysis and detection of metabolites from the roots of TKS have been reported in previous studies. However, all of these studies have the shortcoming of focusing on only the rubber of TKS, without profiling the other metabolites in a systematic and comprehensive way. Here, the primary and secondary metabolites from the leaves of TKS were investigated using UPLC-ESI-MS/MS, and a total of 229 metabolites were characterized. Carboxylic acid derivatives, fatty acyls, phenols, and organooxygen compounds were found to be the major metabolites of TKS. The transcriptome data indicated that ribosomal, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, and linoleic acid metabolism genes were significantly differentially expressed. This study is the first to report the differences in the metabolic and transcriptome profiles of TKS leaves under exogenous ethephon spray, which improves our understanding of the main metabolites and their molecular mechanisms in TKS leaves.


Assuntos
Taraxacum , Compostos Organofosforados , Borracha , Espectrometria de Massas em Tandem , Taraxacum/genética , Transcriptoma
10.
Plant Biotechnol J ; 17(11): 2041-2061, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31150158

RESUMO

Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.


Assuntos
Hevea/enzimologia , Engenharia Metabólica , Borracha/metabolismo , Transferases/genética
11.
Chem Biodivers ; 16(8): e1900250, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250533

RESUMO

Taraxacum kok-saghyz (TKS) is a dandelion species native to Kazakhstan, Uzbekistan and north-west China, considered as a promising alternative source of natural rubber from its roots. The aim of this study was to investigate the possible exploitation of TKS leaves, a rubber byproduct, as a source of phenolic compounds with antioxidant properties for potential applications in forage, nutraceutical and pharmacological fields. Two accessions (TKS016, TKS018) grown under Mediterranean conditions of Sardinia were evaluated at vegetative and flowering stages. The leaves of TKS018 had the highest antioxidant capacity (19.6 mmol trolox equivalent antioxidant capacity 100 g-1 ), total phenolic (106.4 g gallic acid equivalent kg-1 ), tannic phenolics (58.5 g gallic acid equivalent kg-1 ) and total flavonoid contents (22.9 g catechin equivalent kg-1 ). At both phenological stages, TKS016 showed significantly lower values than TKS018 in 1,1-diphenyl-2-picrylhydrazyl (DPPH), total phenolic and tannic phenolics. Six individual molecules were identified, namely chlorogenic, cryptochlorogenic, caffeic, sinapic, chicoric and 3,4-dimethoxycinnamic acids. Chicoric (8.53-10.68 g kg-1 DW) and chlorogenic acids (4.18-7.04 g kg-1 DW) were the most abundant. TKS leaves represent a valuable source of chicoric acid with potential application as antioxidant to be used as herbal medicine and nutrition for production of healthy food/feed.


Assuntos
Antioxidantes/química , Taraxacum/química , Ácidos Cafeicos/química , Ácido Clorogênico/química , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Fenóis/análise , Fenóis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Federação Russa , Succinatos/química , Taraxacum/metabolismo
12.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137823

RESUMO

The rubber grass Taraxacum kok-saghyz (TKS) contains large amounts of natural rubber (cis-1,4-polyisoprene) in its enlarged roots and it is an alternative crop source of natural rubber. Natural rubber biosynthesis (NRB) and storage in the mature roots of TKS is a cascade process involving many genes, proteins and their cofactors. The TKS genome has just been annotated and many NRB-related genes have been determined. However, there is limited knowledge about the protein regulation mechanism for NRB in TKS roots. We identified 371 protein species from the mature roots of TKS by combining two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Meanwhile, a large-scale shotgun analysis of proteins in TKS roots at the enlargement stage was performed, and 3545 individual proteins were determined. Subsequently, all identified proteins from 2-DE gel and shotgun MS in TKS roots were subject to gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and most proteins were involved in carbon metabolic process with catalytic activity in membrane-bounded organelles, followed by proteins with binding ability, transportation and phenylpropanoid biosynthesis activities. Fifty-eight NRB-related proteins, including eight small rubber particle protein (SRPP) and two rubber elongation factor(REF) members, were identified from the TKS roots, and these proteins were involved in both mevalonate acid (MVA) and methylerythritol phosphate (MEP) pathways. To our best knowledge, it is the first high-resolution draft proteome map of the mature TKS roots. Our proteomics of TKS roots revealed both MVA and MEP pathways are important for NRB, and SRPP might be more important than REF for NRB in TKS roots. These findings would not only deepen our understanding of the TKS root proteome, but also provide new evidence on the roles of these NRB-related proteins in the mature TKS roots.


Assuntos
Hemiterpenos/biossíntese , Látex/biossíntese , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Taraxacum/metabolismo , Hemiterpenos/genética , Proteínas de Plantas/genética , Proteoma/genética , Taraxacum/genética
13.
BMC Genomics ; 19(1): 875, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514210

RESUMO

BACKGROUND: Taraxacum kok-saghyz R. (Tks) is a promising alternative species to Hevea brasiliensis for production of high quality natural rubber (NR). A comparative transcriptome analysis of plants with differential production of NR will contribute to elucidate which genes are involved in the synthesis, regulation and accumulation of this natural polymer and could help to develop Tks into a rubber crop. RESULTS: We measured rubber content in the latex of 90 individual Tks plants from 9 accessions, observing a high degree of variability. We carried out de novo root transcriptome sequencing, assembly, annotation and comparison of gene expression of plants with the lower (LR plants) and the higher rubber content (HR plants). The transcriptome analysis also included one plant that did not expel latex, in principle depleted of latex transcripts. Moreover, the transcription of some genes well known to play a major role in rubber biosynthesis, was probed by qRT-PCR. Our analysis showed a high modulation of genes involved in the synthesis of NR between LR and HR plants, and evidenced that genes involved in sesquiterpenoids, monoterpenoids and phenylpropanoid biosynthesis are upregulated in LR plants. CONCLUSIONS: Our results show that a higher amount of rubber in the latex in HR plants is positively correlated with high expression levels of a number of genes directly involved in rubber synthesis showing that NR production is highly controlled at transcriptional level. On the other hand, lower amounts of rubber in LR plants is related with higher expression of genes involved in the synthesis of other secondary metabolites that, we hypothesize, may compete towards NR biosynthesis. This dataset represents a fundamental genomic resource for the study of Tks and the comprehension of the synthesis of NR and other biochemically and pharmacologically relevant compounds in the Taraxacum genus.


Assuntos
Regulação da Expressão Gênica de Plantas , Borracha/metabolismo , Taraxacum/genética , Mapeamento de Sequências Contíguas , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Borracha/análise , Análise de Sequência de RNA
14.
BMC Plant Biol ; 17(1): 34, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28152978

RESUMO

BACKGROUND: Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. RESULTS: Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. CONCLUSIONS: The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.


Assuntos
Genoma de Cloroplastos , Taraxacum/classificação , Núcleo Celular/genética , DNA de Plantas , Marcadores Genéticos , Anotação de Sequência Molecular , Tipagem Molecular , Filogenia , Plantas Daninhas/classificação , Plantas Daninhas/genética , Análise de Sequência de DNA , Especificidade da Espécie , Taraxacum/genética
15.
Heliyon ; 10(4): e25351, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38379982

RESUMO

Taraxacum kok-saghyz (TKS) latex is a natural latex produced from its root, and its extraction optimization process is mainly studied in the present paper. The composition of fresh roots of TKS was quantitatively analyzed, and the results showed that the moisture content of the fresh root was approximately 70 %, and the rubber content averaged to 6 % (dry weight ratio). An optimal process route for extracting the TKS latex was finally determined, making the extraction efficiency reach about 80 %, and a new latex extraction process was established and optimized and named "the process of Buffer Extraction TKS Latex (BETL)". Hevea latex, extracted TKS latex and TKS latex collected directly from the broken roots were compared for study. The results showed that, like Hevea latex, the appearance of TKS latex was milky white; and after centrifugation, both showed four layers from top to bottom: rubber particles, Frey-Wyssling particles, C-serum and lutoids. The results of the composition analysis showed that the concentration of TKS latex ranged from 54.54 % to 68.25 %, which is close to that of concentrated Hevea latex; the moisture content of TKS latex was between 31.75 % and 45.46 %. The protein content of TKS latex was 13.51 mg/mL, which was lower than that of Hevea latex at the same rubber hydrocarbon concentration. The molecular structures and properties of Hevea latex, the extracted TKS latex, and the collected TKS latex were characterized by FTIR, 13C NMR, GPC, TG, SEM and LPSA, and the results showed that the main components and structure of the three latexes were similar, which are all cis-1,4-polyisoprene, and include the proteins and lipids. The distributions molecular weights of the three latexes all showed a bimodal distribution, but the molecular weight of the latex collected from TKS was lower, which indicates the larger molecules were difficult to flow outside the root automatically. The Hevea latex and TKS latex rubber particles were both core-shell structure and the size distribution were bimodal, which was consistent with the GPC analysis results.

16.
Plants (Basel) ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39339620

RESUMO

HMGR (3-hydroxy-3-methylglutaryl-CoA reductase) plays a crucial role as the first rate-limiting enzyme in the mevalonate (MVA) pathway, which is the upstream pathway of natural rubber biosynthesis. In this study, we carried out whole-genome identification of Taraxacum kok-saghyz (TKS), a novel rubber-producing alternative plant, and obtained six members of the TkHMGR genes. Bioinformatic analyses were performed including gene structure, protein properties, chromosomal localization, evolutionary relationships, and cis-acting element analyses. The results showed that HMGR genes were highly conserved during evolution with a complete HMG-CoA reductase conserved domain and were closely related to Asteraceae plants during the evolutionary process. The α-helix is the most prominent feature of the secondary structure of the TkHMGR proteins. Collinearity analyses demonstrated that a whole-genome duplication (WGD) event and tandem duplication event play a key role in the expansion of this family and TkHMGR1 and TkHMGR6 have more homologous gene between other species. Cis-acting element analysis revealed that the TkHMGR gene family had a higher number of MYB-related, light-responsive, hormone-responsive elements. In addition, we investigated the expression patterns of family members induced by ethylene (ETH) and methyl jasmonate (MeJA), and their expression levels at different stages of T. kok-saghyz root development. Finally, subcellular localization results showed that six TkHMGR members were all located in the endoplasmic reticulum. In conclusion, the results of our study lay a certain theoretical basis for the subsequent improvement of rubber yield, molecular breeding of rubber-producing plants, and genetic improvement of T. kok-saghyz.

17.
Plants (Basel) ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124151

RESUMO

Taraxacum kok-saghyz (TKS) is a natural rubber (NR)-producing plant and a model plant for studying the biosynthesis of NR. Analyzing and studying the biosynthetic mechanism of NR is an important way to cultivate high-yield rubber TKS varieties. JAZ proteins, which belong to the Jasmonate ZIM domain family, function as negative regulators in the jasmonic acid (JA) signal transduction pathway. MYC2 is typically regarded as a regulatory factor for the target genes of JAZ proteins; JAZ proteins indirectly influence the gene expression regulated by MYC2 by modulating its activity. Theoretically, JAZ is expected to participate in growth, development, and responses to environmental cues related to rubber and biomass accumulation in TKS, all of which rely on the interaction between JAZ and MYC2. In this study, we identified 11 TkJAZs through homology searching of the TKS genomes and bioinformatics analyses. Subcellular localization, Y2H, and BiFC analysis demonstrate that TkJAZs and TkMYC2 are localized in the nucleus, with all TkJAZs and TkMYC2 showing nuclear colocalization interactions. Overexpression of TkMYC2 in TKS inhibited leaf development, promoted root growth, and simultaneously increased NR production. RNA-seq and qRT-PCR analysis revealed that the TkSRPP/REF genes exhibit varying degrees of upregulation compared to the wild type, upregulating the TkREF1 gene by 3.7-fold, suggesting that TkMYC2 regulates the synthesis of NR by modulating the TkSRPP/REF genes.

18.
Plant Methods ; 20(1): 77, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797847

RESUMO

BACKGROUND: Taraxacum kok-saghyz Rodin (TKS) is a highly potential source of natural rubber (NR) due to its wide range of suitable planting areas, strong adaptability, and suitability for mechanized planting and harvesting. However, current methods for detecting NR content are relatively cumbersome, necessitating the development of a rapid detection model. This study used near-infrared spectroscopy technology to establish a rapid detection model for NR content in TKS root segments and powder samples. The K445 strain at different growth stages within a year and 129 TKS samples hybridized with dandelion were used to obtain their near-infrared spectral data. The rubber content in the root of the samples was detected using the alkaline boiling method. The Monte Carlo sampling method (MCS) was used to filter abnormal data from the root segments of TKS and powder samples, respectively. The SPXY algorithm was used to divide the training set and validation set in a 3:1 ratio. The original spectrum was preprocessed using moving window smoothing (MWS), standard normalized variate (SNV), multiplicative scatter correction (MSC), and first derivative (FD) algorithms. The competitive adaptive reweighted sampling (CARS) algorithm and the corresponding chemical characteristic bands of NR were used to screen the bands. Partial least squares (PLS), random forest (RF), Lightweight gradient augmentation machine (LightGBM), and convolutional neural network (CNN) algorithms were employed to establish a model using the optimal spectral processing method for three different bands: full band, CARS algorithm, and chemical characteristic bands corresponding to NR. The model with the best predictive performance for high rubber content intervals (rubber content > 15%) was identified. RESULT: The results indicated that the optimal rubber content prediction models for TKS root segments and powder samples were MWS-FD CASR-RF and MWS-FD chemical characteristic band RF, respectively. Their respective R P 2 , RMSEP, and RPDP values were 0.951, 0.979, 1.814, 1.133, 4.498, and 6.845. In the high rubber content range, the model based on the LightGBM algorithm had the best prediction performance, with the RMSEP of the root segments and powder samples being 0.752 and 0.918, respectively. CONCLUSIONS: This research indicates that dried TKS root powder samples are more appropriate for constructing a rubber content prediction model than segmented samples, and the predictive capability of root powder samples is superior to that of root segmented samples. Especially in the elevated rubber content range, the model formulated using the LightGBM algorithm has superior predictive performance, which could offer a theoretical basis for the rapid detection technology of TKS content in the future.

19.
Plant Physiol Biochem ; 194: 440-448, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36493591

RESUMO

Taraxacum kok-saghyz Rodin (Tk) is a promising alternative rubber-producing grass. However, low biomass and rubber-producing capability limit its commercial application. As a carbon source transporter in plants, sugar will eventually be exported transporters (SWEETs) have been reported to play pivotal roles in diverse physiological events in the context of carbon assimilate transport and utilization. Theoretically, SWEETs would participate in Tk growth, development and response to environmental cues with relation to the accumulation of rubber and biomass, both of which rely on the input of carbon assimilates. Here, we identified 22 TkSWEETs through homology searching of the Tk genomes and bioinformatics analyses. RNA-seq and qRT-PCR analysis revealed these TkSWEETs to have overlapping yet distinct tissue expression patterns. Two TkSWEET isofroms, TkSWEET1 and TkSWEET12 expressed substantially in the latex, the cytoplasm of rubber-producing laticifers as well as the rubber source. As revealed by the transient expression analysis using Tk mesophyll protoplasts, both TkSWEET1 and TkSWEET12 were located in the plasma membrane. Heterologous expressions of the two TkSWEETs in a yeast mutant revealed that only TkSWEET1 exhibited apparent sugar transport activities, with a preference for monosaccharides. Interestingly, TkSWEET12, the latex-predominant TkSWEET isoform, seemed to have evolved from a tandem duplication event that results in a cluster of six TkSWEET genes with the TkSWEET12 therein, suggesting its specialized roles in the laticifers.


Assuntos
Látex , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Gene ; 867: 147346, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36898514

RESUMO

Taraxacum kok-saghyz has been identified as one of the most promising alternative rubber crops, with laticifer cells that produce high-quality rubber. To uncover the underlying molecular mechanisms regulating natural rubber biosynthesis under MeJA induction, a reference transcriptome was constructed from nine samples of T. kok-saghyz. MeJA treatment was applied for 0 h (control), 6 h, and 24 h. A total of 7452 differentially expressed genes (DEGs) were identified in response to MeJA stress, relative to the control. Functional enrichment showed that these DEGs were primarily related to hormone signaling, defensive responses, and secondary metabolism. Combined analysis of the DEGs induced by MeJA and high-expression genes in laticifer cells further identified seven DEGs related to natural rubber biosynthesis that were upregulated in latex tissue, suggesting that these candidate genes could prove valuable in studying the mechanism of MeJA-mediated natural rubber biosynthesis. In addition, 415 MeJA-responsive DEGs were from several transcription factor families associated with drought resistance. This study helps to elucidate the mechanism of natural rubber biosynthesis in T. kok-saghyz in response to MeJA stress and identifies key candidate MeJA-induced DEGs in laticifer tissue, as well as a candidate drought-response target gene, whose knowledge will promote the breeding of T. kok-saghyz in the aspect of rubber yields and quality, and drought tolerance.


Assuntos
Borracha , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Resistência à Seca , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA