Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Biochem Biophys Res Commun ; 724: 150226, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865815

RESUMO

In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Protetores contra Radiação , Ácido Tauroquenodesoxicólico , Animais , Ácido Tauroquenodesoxicólico/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Protetores contra Radiação/farmacologia , Camundongos , Masculino , Intestinos/efeitos da radiação , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação
2.
Electrophoresis ; 45(13-14): 1252-1264, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38775263

RESUMO

Genetic factors, diet, lifestyle, and other factors lead to various complications in the body, such as obesity and other chronic diseases. The inflammatory state caused by excessive accumulation of body fat affects the pathways related to the control of glycemic homeostasis, leading to a high demand for insulin, to subsequent failure of stressed ß cells, and development of type 2 diabetes mellitus (T2DM). The study of new endocrine signalers, such as bile acids (BAs), becomes necessary as it allows the development of alternatives for T2DM treatment. In this work, a methodology was developed to quantify tauroursodeoxycholic BA (TUDCA) in liver cells of the HepG2 strain treated in hyperlipidic medium. This BA helps to improve insulin clearance by increasing the expression of the insulin-degrading enzyme, restoring sensitivity to this hormone, and making it viable for treating T2DM. Herein, a targeted metabolomic method for TUDCA determination in extracellular medium of hepatocyte matrices by micellar electrokinetic chromatography-UV was optimized, validated, and applied. The optimized background electrolyte was composed of 40 mmol/L sodium cholate and 30 mmol/L sodium tetraborate at pH 9.0. The following figures of merit were evaluated: linearity, limit of quantification, limit of detection, accuracy, and precision. Data obtained with the validated electrophoretic method showed a self-stimulation of TUDCA production in media supplemented only with BA. On the other hand, TUDCA concentration was reduced in the hyperlipidic medium. This suggests that, in these media, the effect of TUDCA is reduced, such as self-stimulated production and consequent regulation of glycemic homeostasis. Therefore, the results reinforce the need for investigating TUDCA as a potential T2DM biomarker as well as its use to treat several comorbidities, such as obesity and diabetes mellitus.


Assuntos
Cromatografia Capilar Eletrocinética Micelar , Diabetes Mellitus Tipo 2 , Obesidade , Ácido Tauroquenodesoxicólico , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/análise , Ácido Tauroquenodesoxicólico/metabolismo , Humanos , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Cromatografia Capilar Eletrocinética Micelar/métodos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Reprodutibilidade dos Testes , Metabolômica/métodos , Modelos Lineares , Limite de Detecção
3.
Biotechnol Appl Biochem ; 71(1): 28-37, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749820

RESUMO

Diabetic peripheral neuropathy (DPN) is the most prevalent complication of type 2 diabetes mellitus (T2DM), and it seriously affects the quality of life of patients. Tauroursodeoxycholic acid (TUDCA) is a bile acid that plays a protective role against various diseases. However, the function of TUDCA in DPN progression needs to be elucidated. Hence, this study clarified the action of TUDCA on DPN development and explored its mechanism of action. Fecal samples were collected from 50 patients with T2DM or DPN. Schwann cells induced by high levels were constructed to simulate an uncontrolled diabetic state. Cell viability and migration were measured using the CCK-8 and wound-healing assays, respectively. Reactive oxygen species and pyroptosis were detected using flow cytometry. Parabacteroides goldsteinii and Parabacteroides distasonis levels were decreased in the feces of patients with DPN. TUDCA enhanced the viability and migration ability of high glucose-stimulated Schwann cells. In addition, Schwann cell pyroptosis stimulated by high glucose levels was inhibited by TUDCA. Furthermore, the protective roles of TUDCA in cell viability, migration ability, and pyroptosis of Schwann cells stimulated by high glucose were suppressed by the overexpression of NLRP3. TUDCA enhanced cell viability and migration and suppressed pyroptosis in Schwann cells stimulated by high glucose levels by modulating NLRP3 expression. Thus, TUDCA may be a promising drug for DPN therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Piroptose , Ácido Tauroquenodesoxicólico , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Glucose/toxicidade , Glucose/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Qualidade de Vida , Células de Schwann/metabolismo , Movimento Celular
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000220

RESUMO

Tauroursodeoxycholic acid (TUDCA) increases the influx of primary bile acids into the gut. Results obtained on animal models suggested that Firmicutes and Proteobacteria phyla are more resistant to bile acids in rats. As part of a pilot study investigating the role of probiotics supplementation in elderly people with home enteral nutrition (HEN), a case of a 92-year-old woman with HEN is reported in the present study. She lives in a nursing home and suffers from Alzheimer's disease (AD); the patient had been prescribed TUDCA for lithiasis cholangitis. The aim of this case report is therefore to investigate whether long-term TUDCA administration may play a role in altering the patient's gut microbiota (GM) and the impact of an antibiotic therapy on the diversity of microbial species. Using next generation sequencing (NGS) analysis of the bacterial 16S ribosomal RNA (rRNA) gene a dominant shift toward Firmicutes and a remodeling in Proteobacteria abundance was observed in the woman's gut microbiota. Considering the patient's age, health status and type of diet, we would have expected to find a GM with a prevalence of Bacteroidetes phylum. This represents the first study investigating the possible TUDCA's effect on human GM.


Assuntos
Antibacterianos , Nutrição Enteral , Microbioma Gastrointestinal , Ácido Tauroquenodesoxicólico , Humanos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Idoso de 80 Anos ou mais , Nutrição Enteral/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , RNA Ribossômico 16S/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/microbiologia
5.
Clin Sci (Lond) ; 137(7): 561-577, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36795945

RESUMO

Cholestasis is a pathophysiologic syndrome with limited therapeutic options. Tauroursodeoxycholic acid (TUDCA) has been employed to treat hepatobiliary disorders and is as effective as UDCA in alleviating cholestatic liver disease in clinical trials. Until now, TUDCA's mechanism of action toward cholestasis remains unclear. In the present study, cholestasis was induced with a cholic acid (CA)-supplemented diet or α-naphthyl isothiocyanate (ANIT) gavage in wild-type and Farnesoid X Receptor (FXR) deficient mice, using obeticholic acid (OCA) as control. The effects of TUDCA on liver histological changes, transaminase level, bile acid composition, hepatocyte death, expression of Fxr and nuclear factor erythroid 2-related factor 2 (Nrf2) and target genes, as well as apoptotic signaling pathways, were investigated. Treating CA-fed mice with TUDCA markedly alleviated liver injury, attenuated bile acids retention in liver and plasma, increased Fxr and Nrf2 nuclear levels and modulated the expression of targets regulating synthesis and transportation of bile acids, including BSEP, MRP2, NTCP and CYP7A1. TUDCA, but not OCA, activated Nrf2 signaling and exerted protective effects against cholestatic liver injury in Fxr-/- mice fed with CA. Furthermore, in both mice with CA- and ANIT-induced cholestasis, TUDCA decreased expression of GRP78 and CCAAT/enhancer-binding protein homologous protein (CHOP), reduced death receptor 5 (DR5) transcription, caspase-8 activation, and BID cleavage, and subsequently inhibited activation of executioner caspases and apoptosis in liver. We confirmed that TUDCA protected against cholestatic liver injury by alleviating BAs burden of dually activating hepatic Fxr and Nrf2. Moreover, inhibiting CHOP-DR5-caspase-8 pathway contributed to the anti-apoptotic effect of TUDCA in cholestasis.


Assuntos
Colestase , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 8/metabolismo , Fígado/metabolismo , Colestase/tratamento farmacológico , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia
6.
J Appl Toxicol ; 43(7): 1095-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36787806

RESUMO

The aim of this study was to determine the effect of tauroursodeoxycholic acid (TUDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced model of cholestasis in mice. Wild-type and farnesoid X receptor (FXR)-deficient (Fxr-/- ) mice were used to generate cholestasis models by gavage with ANIT. Obeticholic acid (OCA) was used as a positive control. In wild-type mice, treatment with TUDCA for 7 days resulted in a dramatic increase in serum levels of alanine aminotransferase (ALT), with aggravation of bile infarcts and hepatocyte necrosis with ANIT-induction. TUDCA activated FXR to upregulate the expression of bile salt export pump (BSEP), increasing bile acids (BAs)-dependent bile flow, but aggravating cholestatic liver injury when bile ducts were obstructed resulting from ANIT. In contrast, TUDCA improved the liver pathology and decreased serum ALT and alkaline phosphatase (ALP) levels in ANIT-induced Fxr-/- mice. Furthermore, TUDCA inhibited the expression of cleaved caspase-3 and reduced the area of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining in the model mice. TUDCA also upregulated anion exchanger 2 (AE2) protein expression, protecting cholangiocytes against excessive toxic BAs. Our results showed that TUDCA aggravated cholestatic liver injury via the FXR/BSEP pathway when bile ducts were obstructed, although TUDCA inhibited apoptotic activity and protected cholangiocytes against excessive toxic BAs.


Assuntos
Colagogos e Coleréticos , Colestase , Camundongos , Animais , Colagogos e Coleréticos/efeitos adversos , Colagogos e Coleréticos/metabolismo , 1-Naftilisotiocianato/toxicidade , 1-Naftilisotiocianato/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fígado , Colestase/induzido quimicamente , Ácidos e Sais Biliares/metabolismo
7.
Infect Immun ; 90(8): e0015322, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862710

RESUMO

C. difficile infection (CDI) is a highly inflammatory disease mediated by the production of two large toxins that weaken the intestinal epithelium and cause extensive colonic tissue damage. Antibiotic alternative therapies for CDI are urgently needed as current antibiotic regimens prolong the perturbation of the microbiota and lead to high disease recurrence rates. Inflammation is more closely correlated with CDI severity than bacterial burden, thus therapies that target the host response represent a promising yet unexplored strategy for treating CDI. Intestinal bile acids are key regulators of gut physiology that exert cytoprotective roles in cellular stress, inflammation, and barrier integrity, yet the dynamics between bile acids and host cellular processes during CDI have not been investigated. Here we show that several bile acids are protective against apoptosis caused by C. difficile toxins in Caco-2 cells and that protection is dependent on conjugation of bile acids. Out of 20 tested bile acids, taurine conjugated ursodeoxycholic acid (TUDCA) was the most potent inhibitor, yet unconjugated UDCA did not alter toxin-induced apoptosis. TUDCA treatment decreased expression of genes in lysosome associated and cytokine signaling pathways. TUDCA did not affect C. difficile growth or toxin activity in vitro whereas UDCA significantly reduced toxin activity in a Vero cell cytotoxicity assay and decreased tcdA gene expression. These results demonstrate that bile acid conjugation can have profound effects on C. difficile as well as the host and that conjugated and unconjugated bile acids may exert different therapeutic mechanisms against CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Anticorpos Antibacterianos/farmacologia , Apoptose , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Infecções por Clostridium/microbiologia , Humanos , Inflamação , Ácido Tauroquenodesoxicólico , Ácido Ursodesoxicólico/farmacologia
8.
Cancer Immunol Immunother ; 71(7): 1655-1669, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34800147

RESUMO

BACKGROUND: Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS: We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS: Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION: Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.


Assuntos
Calreticulina , Estresse do Retículo Endoplasmático , Neoplasias Ovarianas , Apoptose , Calreticulina/metabolismo , Carcinoma Epitelial do Ovário , Feminino , Fluoresceína-5-Isotiocianato , Humanos , Tapsigargina/farmacologia
9.
Brain Behav Immun ; 99: 132-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601012

RESUMO

Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1ß production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1ß production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1ß production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson's disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.


Assuntos
Ursidae , Animais , Apoptose , Bile , Ácidos e Sais Biliares/farmacologia , Encéfalo , Humanos , Inflamação , Estresse Oxidativo
10.
Pharmacol Res ; 177: 106101, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104632

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths in the world. The downregulation of farnesoid X receptor (FXR) is frequently founded in CRC patients. The current study found that the decreased expression of FXR in colorectal cancer leads to disorders of bile acids (BAs) metabolism. The altered BAs profile shaped distinct intestinal flora and positively regulated secretory immunoglobulin A (sIgA). The dual regulation of BAs and sIgA enhanced adhesion and biofilm formation of enterotoxigenic Bacteroides fragilis (ETBF), which has a colorectal tumorigenesis effect. The abundance of ETBF increased significantly in intestinal mucosa of colitis-associated cancer (CAC) mice, and finally promoted the development of colorectal cancer. This study suggests that downregulation of FXR in CRC results in BAs dysregulation, and BAs have strong effects on sIgA and gut flora. The elevated BAs concentration and altered gut microbiome are risk factors for CRC.


Assuntos
Infecções Bacterianas , Neoplasias Colorretais , Animais , Bacteroides fragilis/metabolismo , Ácidos e Sais Biliares/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Regulação para Baixo , Humanos , Imunoglobulina A Secretora/metabolismo , Camundongos
11.
Nutr Neurosci ; 25(7): 1374-1391, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33345721

RESUMO

OBJECTIVE: Parkinson's disease (PD) is a progressive motor disease of unknown etiology. Although neuroprotective ability of endogenous bile acid, tauroursodeoxycholic acid (TUDCA), shown in various diseases, including an acute model of PD,the potential therapeutic role of TUDCA in progressive models of PD that exhibit all aspects of PD has not been elucidated. In the present study, mice were assigned to one of four treatment groups: (1) Probenecid (PROB); (2) TUDCA, (3) MPTP + PROB (MPTPp); and (3) TUDCA + MPTPp. Methods: Markers for dopaminergic function, neuroinflammation, oxidative stress and autophagy were assessed using high performance liquid chromatography (HPLC), immunohistochemistry (IHC) and western blot (WB) methods. Locomotion was measured before and after treatments. Results: MPTPp decreased the expression of dopamine transporters (DAT) and tyrosine hydroxylase (TH), indicating dopaminergic damage, and induced microglial and astroglial activation as demonstrated by IHC analysis. MPTPp also decreased DA and its metabolites as demonstrated by HPLC analysis. Further, MPTPp-induced protein oxidation; increased LAMP-1 expression indicated autophagy and the promotion of alpha-synuclein (α-SYN) aggregation. Discussion: Pretreatment with TUDCA protected against dopaminergic neuronal damage, prevented the microglial and astroglial activation, as well as the DA and DOPAC reductions caused by MPTPp. TUDCA by itself did not produce any significant change, with data similar to the negative control group. Pretreatment with TUDCA prevented protein oxidation and autophagy, in addition to inhibiting α-SYN aggregation. Although TUDCA pretreatment did not significantly affect locomotion, only acute treatment effects were measured, indicating more extensive assessments may be necessary to reveal potential therapeutic effects on behavior. Together, these results suggest that autophagy may be involved in the progression of PD and that TUDCA may attenuate these effects. The efficacy of TUDCA as a novel therapy in patients with PD clearly warrants further study.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico
12.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233018

RESUMO

Inflammation is the main cause of corneal and retinal damage in an ocular alkali burn (OAB). The aim of this study was to investigate the effect of tauroursodeoxycholic acid (TUDCA) on ocular inflammation in a mouse model of an OAB. An OAB was induced in C57BL/6j mouse corneas by using 1 M NaOH. TUDCA (400 mg/kg) or PBS was injected intraperitoneally (IP) once a day for 3 days prior to establishing the OAB model. A single injection of Infliximab (6.25 mg/kg) was administered IP immediately after the OAB. The TUDCA suppressed the infiltration of the CD45-positive cells and decreased the mRNA and protein levels of the upregulated TNF-α and IL-1ß in the cornea and retina of the OAB. Furthermore, the TUDCA treatment inhibited the retinal glial activation after an OAB. The TUDCA treatment not only ameliorated CNV and promoted corneal re-epithelization but also attenuated the RGC apoptosis and preserved the retinal structure after the OAB. Finally, the TUDCA reduced the expression of the endoplasmic reticulum (ER) stress molecules, IRE1, GRP78 and CHOP, in the retinal tissues of the OAB mice. The present study demonstrated that the TUDCA inhibits ocular inflammation and protects the cornea and retina from injury in an OAB mouse model. These results provide a potential therapeutic intervention for the treatment of an OAB.


Assuntos
Queimaduras Químicas , Animais , Apoptose , Queimaduras Químicas/tratamento farmacológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Inflamação/tratamento farmacológico , Infliximab/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , RNA Mensageiro , Hidróxido de Sódio/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562919

RESUMO

Tear hyperosmolarity plays an essential role in the initiation and progression of dry-eye disease. Under a hyperosmotic environment, corneal epithelial cells experience perturbations in endoplasmic reticulum function that can lead to proinflammatory signaling and apoptosis. In this study, we investigated the effect of tauroursodeoxycholic acid (TUDCA), a chemical chaperone known to protect against endoplasmic reticulum stress, on corneal epithelial cells exposed to hyperosmotic conditions. We found that the expression of the genes involved in the activation of the unfolded protein response and the pro-apoptotic transcription factor DDIT3 were markedly upregulated in patients with Sjögren's dry-eye disease and in a human model of corneal epithelial differentiation following treatment with hyperosmotic saline. Experiments in vitro demonstrated that TUDCA prevented hyperosmotically induced cell death by reducing nuclear DNA fragmentation and caspase-3 activation. TUDCA supplementation also led to the transcriptional repression of CXCL8 and IL5, two inflammatory mediators associated with dry-eye pathogenesis. These studies highlight the role of hyperosmotic conditions in promoting endoplasmic reticulum stress in the cornea and identify TUDCA as a potential therapeutic agent for the treatment of dry-eye disease.


Assuntos
Síndromes do Olho Seco , Estresse do Retículo Endoplasmático , Apoptose , Síndromes do Olho Seco/metabolismo , Células Epiteliais/metabolismo , Humanos , Ácido Tauroquenodesoxicólico/farmacologia , Resposta a Proteínas não Dobradas
14.
Biochem Biophys Res Commun ; 570: 96-102, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34274852

RESUMO

Glucocorticoids are known to induce skeletal muscle atrophy by suppressing protein synthesis and promoting protein degradation. Tauroursodeoxycholic acid (TUDCA) has beneficial effects in several diseases, such as hepatobiliary disorders, hindlimb ischemia and glucocorticoid-induced osteoporosis. However, the effects of TUDCA on glucocorticoid -induced skeletal muscle atrophy remains unknown. Therefore, in the present research, we explored the effects of TUDCA on dexamethasone (DEX)-induced loss and the potential mechanisms involved. We found TUDCA alleviated DEX-induced muscle wasting in C2C12 myotubes, identified by improved myotube differentiation index and expression of myogenin and MHC. And it showed that TUDCA activated the Akt/mTOR/S6K signaling pathway and inhibited FoxO3a transcriptional activity to decreased expression of MuRF1 and Atrogin-1, while blocking Akt by MK2206 blocked these effects of TUDCA on myotubes. Besides, TUDCA also attenuated DEX-induced apoptosis of myotubes. Furthermore, TUDCA was administrated to the mouse model of DEX-induced skeletal muscle atrophy. The results showed that TUDCA improved DEX-induced skeletal muscle atrophy and weakness (identified by increased grip strength and prolonged running exhaustive time) in mice by suppression of apoptosis, reduction of protein degradation and promotion of protein synthesis. Taken together, our research proved for the first time that TUDCA protected against DEX-induced skeletal muscle atrophy not only by improving myogenic differentiation and protein synthesis, but also through decreasing protein degradation and apoptosis of skeletal muscle.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Ácido Tauroquenodesoxicólico/administração & dosagem , Ácido Tauroquenodesoxicólico/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Dexametasona , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia
15.
J Neuroinflammation ; 18(1): 216, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544428

RESUMO

BACKGROUND: Tauroursodeoxycholic acid (TUDCA) is a hydrophilic bile acid derivative, which has been demonstrated to have neuroprotective effects in different neurological disease models. However, the effect and underlying mechanism of TUDCA on spinal cord injury (SCI) have not been fully elucidated. This study aims to investigate the protective effects of TUDCA in the SCI mouse model and the related mechanism involved. METHODS: The primary cortical neurons were isolated from E16.5 C57BL/6 mouse embryos. To evaluate the effect of TUDCA on axon degeneration induced by oxidative stress in vitro, the cortical neurons were treated with H2O2 with or without TUDCA added and immunostained with Tuj1. Mice were randomly divided into sham, SCI, and SCI+TUDCA groups. SCI model was induced using a pneumatic impact device at T9-T10 level of the vertebra. TUDCA (200 mg/kg) or an equal volume of saline was intragastrically administrated daily post-injury for 14 days. RESULTS: We found that TUDCA attenuated axon degeneration induced by H2O2 treatment and protected primary cortical neurons from oxidative stress in vitro. In vivo, TUDCA treatment significantly reduced tissue injury, oxidative stress, inflammatory response, and apoptosis and promoted axon regeneration and remyelination in the lesion site of the spinal cord of SCI mice. The functional recovery test revealed that TUDCA treatment significantly ameliorated the recovery of limb function. CONCLUSIONS: TUDCA treatment can alleviate secondary injury and promote functional recovery by reducing oxidative stress, inflammatory response, and apoptosis induced by primary injury, and promote axon regeneration and remyelination, which could be used as a potential therapy for human SCI recovery.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Modelos Animais de Doenças , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Regeneração Nervosa/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos
16.
BMC Microbiol ; 21(1): 137, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947331

RESUMO

BACKGROUND: Burkholderia pseudomallei, a facultative intracellular bacterium, is the aetiological agent of melioidosis that is responsible for up to 40% sepsis-related mortality in epidemic areas. However, no effective vaccine is available currently, and the drug resistance is also a major problem in the treatment of melioidosis. Therefore, finding new clinical treatment strategies in melioidosis is extremely urgent. RESULTS: We demonstrated that tauroursodeoxycholic acid (TUDCA), a clinically available endoplasmic reticulum (ER) stress inhibitor, can promote B. pseudomallei clearance both in vivo and in vitro. In this study, we investigated the effects of TUDCA on the survival of melioidosis mice, and found that treatment with TUDCA significantly decreased intracellular survival of B. pseudomallei. Mechanistically, we found that B. pseudomallei induced apoptosis and activated IRE1 and PERK signaling ways of ER stress in RAW264.7 macrophages. TUDCA treatment could reduce B. pseudomallei-induced ER stress in vitro, and TUDCA is protective in vivo. CONCLUSION: Taken together, our study has demonstrated that B. pseudomallei infection results in ER stress-induced apoptosis, and TUDCA enhances the clearance of B. pseudomallei by inhibiting ER stress-induced apoptosis both in vivo and in vitro, suggesting that TUDCA could be used as a potentially alternative treatment for melioidosis.


Assuntos
Burkholderia pseudomallei/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Melioidose/microbiologia , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Burkholderia pseudomallei/efeitos dos fármacos , Linhagem Celular , Melioidose/tratamento farmacológico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Ácido Tauroquenodesoxicólico/uso terapêutico
17.
Ann Hepatol ; 23: 100289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33217585

RESUMO

INTRODUCTION AND OBJECTIVES: The incidence of gallstone-related disease steadily increased in the last few years. Here, we aimed to investigate the effect of tauroursodeoxycholic acid1 (TUDCA) on preventing cholesterol gallstones formation in high-fat fed (HFD) mice. MATERIAL AND METHODS: Specific pathogen-free male C57Bl/6 mice were fed a lithogenic diet2 (LD group) alone or in combination with TUDCA (5g/kg diet) for 8 weeks. Upon sacrifice, serum, gallbladder, liver and small intestine were collected and the formation of gallstones or crystals in the gallbladder was analyzed. Additionally, the intestinal microbiota, and bile acid composition, serum lipids and hepatic lipids were studied. RESULTS: Cholesterol gallstones with cholesterol crystals formed in mice of the LD-fed group (15/15, 100%). However, only cholesterol crystals were found in three mice without the presence of any gallstone in the TUDCA-treated group. Both serum and hepatic total cholesterol levels in the TUDCA group were significantly decreased compared with the LD group. Concomitantly, mRNA expression of Abcg5 and Abcg8 was significantly lower in the liver of the TUDCA group whilst mRNA transcripts for Abcb11, Acat2, and Cyp27 were significantly increased compared with the LD group. Additionally, the gallbladder cholesterol saturation index (1.06±0.15) in the TUDCA group was significantly decreased compared with the LD group. Interestingly, the ratio of Firmicutes/Bacteroides in the TUDCA group was increased 3x fold. CONCLUSIONS: TUDCA can inhibit the absorption and synthesis of lipids in the small intestine by improving the intestinal microbiota in HFD-fed mice, thus reducing gallstone formation.


Assuntos
Colagogos e Coleréticos/uso terapêutico , Cálculos Biliares/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/uso terapêutico , Animais , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Cálculos Biliares/metabolismo , Cálculos Biliares/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
BMC Pulm Med ; 21(1): 149, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952237

RESUMO

BACKGROUND: Several studies demonstrate that endoplasmic reticulum (ER) stress-mediated epithelial-mesenchymal transition (EMT) is involved in the process of bleomycin (BLM)-induced pulmonary fibrosis. Tauroursodeoxycholic acid (TUDCA), a bile acid with chaperone properties, is an inhibitor of ER stress. This study aimed to investigate the preventive effects of TUDCA on BLM-induced EMT and lung fibrosis. METHODS: The model of lung fibrosis was established by intratracheal injection with a single dose of BLM (3.0 mg/kg). In TUDCA + BLM group, mice were intraperitoneally injected with TUDCA (250 mg/kg) daily. RESULTS: BLM-induced alveolar septal destruction and inflammatory cell infiltration were alleviated by TUDCA. BLM-induced interstitial collagen deposition, as determined by Sirius Red staining, was attenuated by TUDCA. BLM-induced elevation of pulmonary α-smooth muscle actin (α-SMA) and reduction of pulmonary E-cadherin were attenuated by TUDCA. BLM-induced pulmonary Smad2/3 phosphorylation was suppressed by TUDCA. BLM-induced elevation of Ki67 and PCNA was inhibited by TUDCA in mice lungs. In addition, BLM-induced elevation of HO-1 (heme oxygenase-1) and 3-NT (3-nitrotyrosine) was alleviated by TUDCA. Finally, BLM-induced upregulation of pulmonary GRP78 and CHOP was attenuated by TUDCA. CONCLUSIONS: These results provide evidence that TUDCA pretreatment inhibits Smad2/3-medited EMT and subsequent lung fibrosis partially through suppressing BLM-induced ER stress and oxidative stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/prevenção & controle , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Bleomicina , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
19.
Adv Exp Med Biol ; 1275: 229-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539018

RESUMO

If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1ß)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.


Assuntos
Ácidos e Sais Biliares , Proteínas Quinases , Apoptose , Hepatócitos , Fosfatidilinositol 3-Quinases , Receptor fas/genética
20.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639105

RESUMO

Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein processing in the endoplasmic reticulum, and TGF-ß signaling in human keloid tissue samples compared to controls, based on ingenuity pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Electron microscopic examinations revealed an increased number of dysmorphic mitochondria and expanded endoplasmic reticulum (ER) in human keloid tissue samples than that in controls. Western blot analysis performed using human tissues suggested noticeably higher ER stress signaling in keloids than in normal tissues. Treatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, significantly decreased scar formation in rabbit models, compared to normal saline and steroid injections. In summary, our findings demonstrate the contributions of mitochondrial dysfunction and dysregulated ER stress signaling in human keloid formation and the potential of TUDCA in the treatment of keloids.


Assuntos
Colagogos e Coleréticos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Queloide/prevenção & controle , Ácido Tauroquenodesoxicólico/farmacologia , Adulto , Animais , Apoptose , Estudos de Casos e Controles , Feminino , Humanos , Queloide/etiologia , Queloide/metabolismo , Queloide/patologia , Masculino , Coelhos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA