Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(20): 4757-4784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34898343

RESUMO

Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.


Assuntos
Camellia sinensis , Chá , Humanos , Chá/química , Camellia sinensis/química , Flavonoides/análise
2.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956928

RESUMO

Mulberry (Morus alba L.) leaves from two cultivars, Yai-Burirum (YB) and Khunphai (KP), were prepared into green tea (GT) and black tea (BT). Compared to fresh leaf (FL) extract, GT and BT extracts were evaluated for their total phenolic and total flavonoid contents. Total phenolic content (TPCs) in all samples ranged between 129.93 and 390.89 mg GAE/g extract. The processing of tea decreased the levels of TPC when compared to FL extracts in both cultivars. The total flavonoid content (TFCs) in all samples was found in the range of 10.15-39.09 mg QE/g extract and TFCs in GT and BT extracts were higher than FL extracts. The change in tryptophan, melatonin, phenolic and flavonoid contents was investigated by liquid chromatography-mass spectroscopy (LC-MS). The results exhibited that tryptophan contents in all samples were detected in the range 29.54-673.72 µg/g extract. Both GT and BT extracts increased tryptophan content compared to FL extracts. BT extracts presented the highest amounts of tryptophan among others in both cultivars. Phenolic compounds were found in mulberry leaf extracts, including gallic acid, caffeic acid, gentisic acid, protocatechuic acid and chlorogenic acid. Chlorogenic acid presented the highest amount in all samples. Almost all phenolic acids were increased in the processed tea extracts except chlorogenic acid. Rutin was the only flavonoid that was detected in all extracts in the range 109.48-1009.75 mg/g extract. The change in phenolic and flavonoid compounds during tea processing resulted in the change in antioxidant capacities of the GT and BT extracts. All extracts presented acetylcholinesterase enzyme (AChE) inhibitory activity with IC50 in the range 146.53-165.24 µg/mL. The processing of tea slightly increased the AChE inhibitory effect of GT and BT extracts. In conclusion, processed tea from mulberry leaves could serve as a new alternative functional food for health-concerned consumers because it could be a promising source of tryptophan, phenolics and flavonoids. Moreover, the tea extracts also had antioxidative and anti-AChE activities.


Assuntos
Melatonina , Morus , Folhas de Planta , Acetilcolinesterase , Antioxidantes/farmacologia , Ácido Clorogênico/análise , Cromatografia Líquida , Flavonoides/farmacologia , Melatonina/análise , Morus/química , Fenóis/química , Extratos Vegetais/química , Folhas de Planta/química , Espectrometria de Massas em Tandem , Chá , Triptofano
3.
Int J Food Sci Nutr ; 72(3): 308-323, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32746657

RESUMO

Very little is known about saponins in tea and their biosynthesis in tea plants despite of the importance. Here, we studied tea saponins and their biosynthesis genes. Saponins were promptly recovered in tea infusions. Cytotoxicity of tea saponin extracts on human tongue squamous and hepatocellular carcinoma lines showed respective IC50 values of 29.2 and 17.5 µg/mL, which may be attributable to over 40 saponins identified in green tea. Saponin contents varied in shoot tips of 42 tea plant varieties but did not change drastically during tea processing. Saponin biosynthetic gene expression was consistent with its contents in plant tissues. Thus, plant tips produce significant amounts of saponins, which are stable during tea processing, and ready to be recovered to tea infusions to provide potent health benefits to consumers. This study paves a road towards clarifying the biosynthesis and genetic improvement of saponins in tea plants.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Expressão Gênica , Saponinas/análise , Saponinas/biossíntese , Triterpenos/análise , Triterpenos/metabolismo , Antineoplásicos/farmacologia , Vias Biossintéticas/genética , Camellia sinensis/química , Humanos , Extratos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Molecules ; 25(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456315

RESUMO

This study applied an untargeted-targeted (UT) fingerprinting approach, based on comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF MS), to assess the effects of rainfall and temperature (both seasonal and elevational) on the tea metabolome. By this strategy, the same compound found in multiple samples need only to be identified once, since chromatograms and mass spectral features are aligned in the data analysis process. Primary and specialized metabolites of leaves from two Chinese provinces, Yunnan (pu'erh) and Fujian (oolong), and a farm in South Carolina (USA, black tea) were studied. UT fingerprinting provided insight into plant metabolism activation/inhibition, taste and trigeminal sensations, and antioxidant properties, not easily attained by other analytical approaches. For example, pu'erh and oolong contained higher relative amounts of amino acids, organic acids, and sugars. Conversely, black tea contained less of all targeted compounds except fructose and glucose, which were more similar to oolong tea. Findings revealed compounds statistically different between spring (pre-monsoon) and summer (monsoon) in pu'erh and oolong teas as well as compounds that exhibited the greatest variability due to seasonal and elevational differences. The UT fingerprinting approach offered unique insights into how differences in growing conditions and commercial processing affect the nutritional benefits and sensory characteristics of tea beverages.


Assuntos
Camellia sinensis/metabolismo , Metaboloma/genética , Chá/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Camellia sinensis/química , Camellia sinensis/crescimento & desenvolvimento , Clima , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Folhas de Planta/química , Folhas de Planta/metabolismo , Chá/crescimento & desenvolvimento
5.
J Sci Food Agric ; 100(3): 978-985, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31617213

RESUMO

BACKGROUND: Sorghum grain is rich in phenolic compounds and has the potential to be developed into functional beverages such as sorghum grain tea, in which the health benefits and flavour are the important quality attributes to be considered in tea product development. Therefore, this study investigated the effect of grain tea processing steps on the phenolic contents, antioxidant activity and aroma profile (volatile compounds) of MR-Buster (red-coloured) and Shawaya Short Black 1 (black-coloured) sorghum and the results compared with those for our previously reported Liberty (white-coloured) sorghum. RESULTS: Tea processing had significant impacts on sorghum polyphenols and volatile compounds, but the effect and level varied among sorghum varieties. The phenolic contents and antioxidant activity in these three sorghum varieties were consistent in both raw grain and grain tea samples and in the order Shawaya Short Black 1 > MR-Buster > Liberty. However, the volatile profiles (both individual and grouped volatiles) were significantly different between sorghum varieties, and the abundance and diversity of the volatile compounds of the tea samples were in the order Liberty > MR-Buster > Shawaya Short Black 1. CONCLUSIONS: Black-coloured sorghum with high phenolic content and antioxidant activity is more suitable for making sorghum tea considering the health benefits. In terms of the aroma intensity and diversity, white-coloured sorghum could be the ideal material. However, future study is needed to determine the key volatile compounds that positively contribute to the aroma. This work provides important insights into the selection of grain materials for sorghum grain tea production. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Bebidas/análise , Fenóis/química , Extratos Vegetais/química , Sorghum/química , Compostos Orgânicos Voláteis/química , Manipulação de Alimentos , Sorghum/classificação
6.
J Food Sci Technol ; 51(1): 51-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24426047

RESUMO

Instantaneous controlled pressure drop (DIC) was applied to obtain a suitable cell disruption extent as a technology in green tea processing. Microstructural observations showed that DIC increased cell disruption in an even manner as reflected from loosened palisade, distorted cells, widened space between cells, disrupted and rearranged cellular membrane in tea leaves. Color difference determination supported that DIC could facilitate the release and transport of cell contents. DIC sample showed a rise in redness, over 2.5 times greater than the control after spreading naturally for 24 h. Chemical determination revealed a better infusion behavior of tea polyphenols and amino acids in green tea manufactured by DIC method both at high and low temperature. The increase in tea polyphenols content in liquor for the first brew from twisted and needle tea was about 35% and that from flat tea was about 15% in DIC method over the traditional processing. These results suggest that DIC process can be applied in green tea processing for both a traditional product and a new kind of tea capable of making with cold water.

7.
Food Res Int ; 187: 114392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763654

RESUMO

Variations in cultivars and cultivation altitudes have significant impacts on tea flavour compounds however lack of comprehensive understanding. This study provided insights into differential accumulation of crucial flavour compounds in response to cultivars, cultivation altitudes, and processing. Twelve flavonoids (262.4 âˆ¼ 275.4 mg•g-1) and 20 amino acids (AAs) (56.5 âˆ¼ 64.8 mg•g-1) were comparative analyzed in 'Longjing 43' and 'Qunti' fresh leaves harvested at low (80 m, LA) and high (500 m, HA) altitudes. Additionally, an in-depth correlation unravelling of 31 alkaloids, 25 fatty acids, 31 saccharides, 8 organic acids, and 7 vitamins and flavonoids/AAs during green tea (GT) and black tea (BT) processing was performed. Enhenced flavonoid accumulation alongside higher AAs and saccharides in HA GT promoted a sweet/mellow flavour. Abundant flavonoids, AAs, and saccharides derivates in LA BT gave rise to a sweet aftertaste. The study presents an integrated illustration of major flavour compounds' differential accumulation patterns and their interrelations, providing new insights into the influence of cultivation conditions on tea flavour.


Assuntos
Altitude , Camellia sinensis , Flavonoides , Folhas de Planta , Chá , Folhas de Planta/química , Folhas de Planta/metabolismo , Flavonoides/análise , Chá/química , Camellia sinensis/química , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Paladar , Aminoácidos/análise , Aminoácidos/metabolismo , Manipulação de Alimentos/métodos , Aromatizantes/análise , Alcaloides/análise , Alcaloides/metabolismo
8.
Foods ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731709

RESUMO

Longjing tea is favored by consumers due to its refreshing and delicate aroma, as well as its fresh and sweet flavor. In order to study the processing technology of Longjing tea with 'Baiye 1' tea varieties, solid phase microextraction and gas chromatography-mass spectrometry were used to analyze the volatile components of Longjing tea in different process stages. The results revealed the identification of 275 aroma metabolites in the processing samples of Longjing tea. The sensory evaluation and principal component analysis revealed that the leaves of fresh (XY) and spreading (TF) were different from the leaves of first panning (YQ), second panning (EQ), final panning (HG), and fragrance enhancing (TX). The relative contents of geraniol (1199.95 and 1134.51), linalool (745.93 and 793.98), methyl salicylate (485.22 and 314.67), phenylethyl alcohol (280.14 and 393.98), 2-methylfuran (872.28 and 517.96), 2-butenal (56.01 and 154.60), and 2-hexenal (46.22 and 42.24), refreshing and floral substances in the XY and TF stages, were higher than other stages. The aroma contents of 2-methylfuran, furfural, 2-methyl-1-penten-3-one, 3-hexen-2-one, dodecane, hexanoyl hexanoate, 2,5-dimethyl-pyrazine, and methyl-pyrazine were found to be significantly positively correlated with the intensity of chestnut aroma. In conclusion, this study contributes to a better understanding of the composition and formation mechanism of chestnut-like aroma and provides new insights into the processing technology to improve the quality of albino green tea.

9.
Food Chem X ; 22: 101371, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38633742

RESUMO

Hundreds of green tea products are available on the tea market and exhibit different characteristics. In the present study, seven types of green tea were processed, and their nonvolatile profiles were analyzed by liquid chromatography-mass spectrometry. Non-spreading green tea contained higher concentrations of catechins and flavonoid glycosides, but lower concentrations of amino acids, caffeine, and theaflavins. Non-rolling green teas with a straight appearance contained higher concentrations of flavonoid glycosides and theaflavins. In contrast, leaf-rolling green teas contained much lower concentrations of flavonoid glycosides and catechins. These seven green tea qualities all decreased following prolonged storage, concurrent with increasing concentrations of proanthocyanidins, catechins dimers, theaflavins, and organic acids. The leaf-rolling green teas exhibited reduced levels of deterioration during storage in terms of their nonvolatile profile and sensory quality. Findings show that moderate destruction on tea leaves during green tea processing is beneficial to both tea flavor and quality maintenance during storage.

10.
Food Chem ; 450: 139376, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648695

RESUMO

Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".


Assuntos
Bactérias , Camellia sinensis , Aromatizantes , Fungos , Metabolômica , Paladar , Chá , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Aromatizantes/metabolismo , Aromatizantes/química , Chá/química , Chá/microbiologia , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/microbiologia , Fungos/metabolismo , Odorantes/análise , Humanos
11.
Food Chem ; 460(Pt 3): 140580, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142197

RESUMO

It is imperative to unravel the dynamic variation of volatile components of vine tea during processing to provide guidance for tea quality evaluation. In this study, the dynamic changes of volatile compounds of vine tea during processing were characterized by GC-IMS and HS-SPME/GC-MS. As a result, 103 volatile compounds were characterized by the two technologies with three overlapped ones. The random forest approach was employed to develop the models and explore key volatile compounds. 23 key compounds were explored, among which 13 were derived from GC-IMS and ten were from HS-SPME/GC-MS. Moreover, the area under the receiver operating characteristics curve with 100 cross validations by the pair-wised models were all 1 for the established models. Furthermore, the primary aroma formation mechanism for the key volatile compounds were mainly involved in fatty acid and amino acid metabolism. Besides, this study provides a theoretical support for directed processing and quality control of vine tea.


Assuntos
Camellia sinensis , Cromatografia Gasosa-Espectrometria de Massas , Aprendizado de Máquina , Odorantes , Microextração em Fase Sólida , Chá , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos , Chá/química , Camellia sinensis/química , Odorantes/análise , Manipulação de Alimentos , Algoritmos , Espectrometria de Mobilidade Iônica/métodos
12.
Food Chem X ; 21: 101155, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38370302

RESUMO

Aroma is an important factor affecting the quality of tea. Fatty acids are one of precursors and their derived contributes to tea aroma considerably. In this study, we analyzed the fatty acids of Jinmudan fresh tea leaves in different stalk position. It was found that with shoot maturity increased, the content of PUFAs (Polyunsaturated fatty acids) was increased while the content of SFAs (Saturated fatty acids) and MUFAs (Monounsaturated fatty acids) gradually decreased. During the processing period, totally 704 kinds of compounds were identified, among them, 27 kinds of fatty acid-derived volatile compounds were selected including 6 kinds of aldehydes, 8 kinds of alcohols, 13 kinds of esters and their dynamic change were revealed. Finally, the character of aroma during main processing stages and processed tea was concluded by using a flavor wheel. This study results provide a theoretical basis for the improvement of processing and quality in Jinmudan black tea.

13.
Food Chem ; 447: 139080, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520904

RESUMO

Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).


Assuntos
Camellia sinensis , Catequina , Camellia sinensis/química , Chá/química , Metabolômica/métodos , Catequina/análise , Odorantes/análise , Folhas de Planta/química
14.
Food Chem X ; 18: 100654, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397225

RESUMO

Cycloxaprid (CYC) with a chiral oxabridged cis- structure contains a pair of enantiomers. Enantioselective degradation, transformation and metabolite of CYC was performed in different solvents under light and raw Puer tea processing. The results showed that cycloxaprid enantiomers in acetonitrile and acetone was stable over 17 day, however the transformation of 1S, 2R-(-)-cycloxaprid or 1R, 2S-(-)-cycloxaprid was founded in methanol. The fastest degradation of cycloxaprid occurred in acetone under light, the metabolites were founded with retention times (TR) at 34.83, 15.78 min, which mainly was via the reduce reaction of NO2 to NO, and rearrange reaction to tetrahydropyran. Degradation pathways were via the cleavage of the oxabridge seven member ring and the whole C ring. However, the degradation pathway under raw Puer tea processing was via the cleavage of whole C ring and the cleavage of oxabridge seven member ring and reducing NO2, then it underwent an elimination of nitromethylene and rearrange reaction. This pathway of Puer tea processing was firstly founded.

15.
Foods ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231828

RESUMO

Catechins are the major flavor substances in teas, which have a variety of health effects; however, high catechin and high sensory quality are a pair of contradictions that are difficult to coordinate. To explore the processing procedure with high catechins and high sensory quality, a single-factor processing experiment was carried out over the processing production of oolong tea. Combined with orthogonal partial least square discriminant analysis (OPLS-DA), correlation analysis, and principal component analysis (PCA), the optimal production procedure for oolong tea is as follows: red light withering for 8 h, leaf rotating for 10 min with a total standing time for 8 h, drum roasting for 5 min at 290 °C, low-temperature rolling (flattening at 4 °C for 5 min, without pressure for 1 min and under pressure for 5 min), microwave drying (800 W for 7.5 min). This study demonstrates a significant increase in the retention of catechins, which contributes to the mellow and brisk tastes of oolong tea, addressing the challenge of catechin content and sensory quality. Our study provides a novel insight into the relationship between the oolong tea processing and flavor formation.

16.
Food Res Int ; 163: 112182, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596123

RESUMO

Despite some studies on tea leaf cuticular wax, their component changes during dehydration and withering treatments in tea processing and suspected relation with tea flavor quality formation remain unknown. Here, we showed that tea leaf cuticular wax changed drastically in tea leaf development, dehydration, or withering treatment during tea processing, which affected tea flavor formation. Caffeine was found as a major component of leaf cuticular wax. Caffeine and inositol contents in leaf cuticular wax increased during dehydration and withering treatments. Comparisons showed that tea varieties with higher leaf cuticular wax loading produced more aroma than these with lower cuticular wax loading, supporting a positive correlation between tea leaf cuticular wax loading and degradation with white tea aroma formation. Dehydration or withering treatment of tea leaves also increased caffeine and inositol levels in leaf cuticular wax and triggered cuticular wax degradation into various molecules, that could be related to tea flavor formation. Thus, tea leaf cuticular waxes not only protect tea plants but also contribute to tea flavor formation. The study provides new insight into the dynamic changes of tea leaf cuticular waxes for tea plant protection and tea flavor quality formation in tea processing.


Assuntos
Camellia sinensis , Desidratação , Desidratação/metabolismo , Camellia sinensis/metabolismo , Cafeína/metabolismo , Folhas de Planta/metabolismo , Ceras , Inositol , Chá/metabolismo
17.
Food Chem X ; 18: 100730, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397208

RESUMO

This study delved into the aroma characteristics of "Qingxiang" oolong tea, analyzing six different cultivars and their processing modes. The findings showed that both cultivars and processing modes have a significant impact on the oolong tea aroma system. The study identified 18 terpenoid volatiles (VTs), 11 amino-acid-derived volatiles (AADVs), 15 fatty-acid-derived volatiles (FADVs), 3 carotenoid-derived volatiles (CDVs), and 10 other compounds in oolong tea that differentiate it from green and black tea. The turn-over stage was found to be the primary processing stage for oolong tea aroma formation. Molecular sensory analysis revealed that the "fresh" odor attribute is the basis for its aroma, while "floral and fruity" fragrances are its aroma characteristics. The perception of oolong tea as "fresh" and "floral and fruity" is influenced by the interactions of its aroma components. These findings provide a new basis for breed improvement and process enhancement in oolong tea production.

18.
Food Chem ; 403: 134263, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166927

RESUMO

To comprehensively analyse flavour substance formation in Congou black tea, dynamic changes in non-volatile and volatile compositions and enzymatic activity were analysed. In total, 107 non-volatile and 222 volatile compositions were identified via ultra-high performance liquid chromatography coupled with quadrupole-exactive mass spectrometry (UHPLC-Q-Exactive/MS) and stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS), and eight metabolic pathways were explored during tea processing. Significant variations in metabolites were observed during processing (P < 0.05), especially in the fermentation stage, including high accumulation of taste and colour substances due to decreased flavonoid synthase activity and elevated oxidase activity. Correlation analysis clarified that the mutual transformation between non-volatile and volatile substances occurs in certain types of processing, including amino acids, amino acid-derived volatiles (AADVs), glycosidically bound volatiles (GBVs), and volatile terpenoids (VTs). Our study provides a detailed overview of the dynamic changes of in flavour substrates and key enzyme activities during Congou black tea processing.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Chá/química , Paladar , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Camellia sinensis/química , Aromatizantes/análise , Aminoácidos/metabolismo , Redes e Vias Metabólicas
19.
Food Res Int ; 169: 112839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254414

RESUMO

Carotenoid-derived volatiles are important contributors to tea aroma quality. However, the profile of the carotenoid pathway and carotenoid-derived volatiles (CDVs) artificial regulation in oolong tea processing has yet to be investigated. In the present work, the content and varieties of carotenoid-derived volatiles, the genome-wide identification of carotenoid cleavage dioxygenase (CsCCD) gene family, the expression level of CsCCD and other key genes in the carotenoid pathway, and the profile of carotenoid substances were analyzed by multi-omics and bioinformatics methods with innovative postharvest supplementary LED light during oolong tea processing. The results showed that during oolong tea processing, a total of 17 CDVs were identified. The content of ß-ionone increased up to 26.07 times that of fresh leaves and its formation was significantly promoted with supplementary LED light from 0.54 µg/g to 0.83 µg/g in the third turning over treatment. A total of 11 CsCCD gene family members were identified and 119 light response cis-acting regulatory elements of CsCCD were found. However, the expression level of most genes in the carotenoid pathway including CsCCD were reduced due to mechanical stress. 'Huangdan' fresh tea leaves had a total of 1 430.46 µg/g 22 varieties of carotenoids, which mainly composed of lutein(78.10%), ß-carotene(8.24%) and zeaxanthin(8.18%). With supplementary LED light, the content of antherxanthin and zeaxanthin in xanthophyll cycle was regulated and CDVs such as α-ionone, ß-ionone, pseudoionone, damascenone, 6,10-dimethyl-5,9-undecadien-2-one, citral, geranyl acetate and α-farnesene were promoted significantly in different phases during oolong tea processing. Our results revealed the profile of the carotenoid metabolism pathway in oolong tea processing from the perspective of precursors, gene expression and products, and put forward an innovative way to improve CDVs by postharvest supplementary LED light.


Assuntos
Carotenoides , Redes e Vias Metabólicas , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Chá
20.
Food Res Int ; 172: 113186, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689937

RESUMO

The elegant orchid-like fragrance of tea has always been tea processors and consumers' top priority. Controlling the production process is very important for tea aroma formation. This study aims to investigate the synthesis of (Z)-methyl epijasmonate (epi-MeJA), a key contributor to orchid-like aroma properties in tea, during tea processing. The changes in content of epi-MeJA were analysed during the processing of two tea varieties (Anxi Tieguanyin and Taiping Houkui) with typical orchid-like fragrance. It was found to be mainly synthesized and accumulated during tea processing, as fresh tea leaves contained little or even no epi-MeJA. Its content was positively correlated with the processing time in the enzyme active stages (before fixation). During the fixation stages, isomerization occurred due to high temperatures, with a degree of epimerization to the much less odor active isomer (Z)-methyl jasmonate. Isomerization could also occurred during the drying process, which is dominated by the drying temperature.


Assuntos
Acetatos , Odorantes , Isomerismo , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA