Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int Microbiol ; 27(4): 1195-1204, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38151632

RESUMO

Tectona grandis Linn, commonly known as teak, is traditionally used to treat a range of diseases, including the common cold, headaches, bronchitis, scabies, diabetes, inflammation, and others. The present study was conducted with the purpose of isolating and identifying the active compounds in T. grandis leaf against a panel of Vibrio spp., which may induce vibriosis in shrimp, using bioassay-guided purification. The antimicrobial activity was assessed using the microdilution method, followed by the brine shrimp lethality assay to determine toxicity. Following an initial screening with a number of different solvents, it was established that the acetone extract was the most effective. The acetone extract was then exposed to silica gel chromatography followed by reversed-phase HPLC and further UHPLC-orbitrap-ion trap mass spectrometry to identify the active compounds. Three compounds called 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin were identified with substantial anti-microbial action against V. parahaemolyticus, V. alginolyticus, V. harveyi, V. anguillarum, and V. vulnificus. The IC50 values of the three compounds viz. 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin varied between 2 and 28, 7 and 38, and 7 and 56 µg/mL, respectively, which are as good as the standard antibiotics such as amoxicillin and others. The in vivo toxicity test revealed that the compounds were non-toxic to shrimp. The results of the study suggest that T. grandis leaf can be used as a source of bioactive compounds to treat Vibrio species in shrimp farming.


Assuntos
Antibacterianos , Artemia , Bioensaio , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Vibrio , Animais , Vibrio/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Artemia/efeitos dos fármacos , Combretaceae/química , Fracionamento Químico
2.
Mol Biol Rep ; 50(6): 4875-4886, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060520

RESUMO

BACKGROUND: Teak (Tectona grandis L.) is a forest tree having 2n = 2x = 36 diploid chromosomes. Plants are continually subjected to variety of abiotic stresses due to climate change, which alter their physiological processes and gene expression. METHODS AND RESULTS: The current study sought to examine the physiological and differential gene expression of teak seedlings exposed to abiotic stresses (150 mM NaCl and 15% PEG-6000). Chlorophyll content, membrane stability index and relative water content were measured at 0, 2, 7 and 12 days after treatment. These parameters were initially numerically reduced, but they were significantly reduced during a longer period of treatment. Seedlings treated with 150 mM NaCl displayed more harmful effect on the plant than other treatments. The results showed that variety of stresses significantly affect the physiology of seedlings because they cause membrane damage, ROS generation, chlorophyll degradation, and reduction in water absorption. The gene expression of treated and control seedlings was also evaluated at 12 days after treatment. Ten stress-related genes were examined for their differential expression using RT-PCR under applied stress. The stress-treated seedlings' leaves showed an up-regulated expression of the genes MYB-3, HSP-1, BI-1 and CS-2. CONCLUSION: Up-regulation of the genes confirmed the protective function of these genes in plants under abiotic stress. However, gene expression was affected by treatments, the extent of stress and the species of plant. This study came to the conclusion that physiological parameters could be utilized as marker indices to assess a tree's capability to withstand stress at seedling stage. The up-regulated genes will be further investigated and utilized to validate stress tolerance and susceptible teak seedlings.


Assuntos
Plântula , Cloreto de Sódio , Plântula/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Clorofila/metabolismo , Cloreto de Sódio na Dieta , Água/metabolismo , Expressão Gênica
3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203195

RESUMO

Type 2 diabetes (T2D) is a global health challenge with increased morbidity and mortality rates yearly. Herbal medicine has provided an alternative approach to treating T2D with limited access to formal healthcare. Tectona grandis is being used traditionally in the treatment of diabetes. The present study investigated the antidiabetic potential of T. grandis leaves in different solvent extractions, and the crude extract that demonstrated the best activity was further fractionated through solvent-solvent partitioning. The ethyl acetate fraction of the ethanol crude extract showed the best antidiabetic activity in inhibiting α-glucosidase, delaying glucose absorption at the small intestine's lumen, and enhancing the muscle's postprandial glucose uptake. The ethyl acetate fraction was further elucidated for its ability to reduce hyperglycemia in diabetic rats. The ethyl acetate fraction significantly reduced high blood glucose levels in diabetic rats with concomitant modulation in stimulated insulin secretions through improved pancreatic ß-cell function, insulin sensitivity by increasing liver glycogen content, and reduced elevated levels of liver glucose-6-phosphatase activity. These activities could be attributed to the phytochemical constituents of the plant.


Assuntos
Acetatos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Ratos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Estreptozocina , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Frutose , Solventes
4.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835560

RESUMO

Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.


Assuntos
Nicotiana , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Nicotiana/genética , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Filogenia
5.
Molecules ; 28(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570724

RESUMO

Over the past decade, the attention of researchers has been drawn to materials with enzyme-like properties to substitute natural enzymes. The ability of nanomaterials to mimic enzymes makes them excellent enzyme mimics; nevertheless, there is a wide berth for improving their activity and providing a platform to heighten their potential. Herein, we report a green and facile route for Tectona grandis leaves extract-assisted synthesis of silver nanoparticles (Ag NPs) decorated on Mg-Al layered double hydroxides (Mg-Al-OH@TGLE-AgNPs) as a nanocatalyst. The Mg-Al-OH@TGLE-AgNPs nanocatalyst was well characterized, and the average crystallite size of the Ag NPs was found to be 7.92 nm. The peroxidase-like activity in the oxidation of o-phenylenediamine in the presence of H2O2 was found to be an intrinsic property of the Mg-Al-OH@TGLE-AgNPs nanocatalyst. In addition, the use of the Mg-Al-OH@TGLE-AgNPs nanocatalyst was extended towards the quantification of Hg2+ ions which showed a wide linearity in the concentration range of 80-400 µM with a limit of detection of 0.2 nM. Additionally, the synergistic medicinal property of Ag NPs and the phytochemicals present in the Tectona grandis leaves extract demonstrated notable antibacterial activity for the Mg-Al-OH@TGLE-AgNPs nanocatalyst against Gram-negative Escherichia coli and Gram-positive Bacillus cereus.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Peróxido de Hidrogênio , Antibacterianos/química , Peroxidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566245

RESUMO

Steroid 5α-reductase plays a crucial role in catalyzing the conversion of testosterone to dihydrotestosterone, which is involved in many androgen-dependent disorders. Leaf-hexane extract from Tectona grandis L.f. has shown promise as a 5α-reductase inhibitor. The objectives of this current study were to isolate and identify 5α-reductase inhibitors from T. grandis leaves and to use them as the bioactive markers for standardization of the extract. Three terpenoid compounds, (+)-eperua-8,13-dien-15-oic acid (1), (+)-eperua-7,13-dien-15-oic acid (2), and lupeol (3), were isolated and evaluated for 5α-reductase inhibitory activity. Compounds 1 and 2 exhibited potent 5α-reductase inhibitory activity, while 3 showed weak inhibitory activity. An HPLC method for the quantitative determination of the two potent inhibitors (1 and 2), applicable for quality control of T. grandis leaf extracts, was also developed. The ethanolic extract showed a significantly higher content of 1 and 2 than found in the hexane extract, suggesting that ethanol is a preferable extraction solvent. This study is the first reported isolation of 5α-reductase inhibitors (1 and 2) from T. grandis leaves. The extraction and quality control methods that are safe and useful for further development of T. grandis leaf extract as an active ingredient for hair loss treatment products are also reported.


Assuntos
Lamiaceae , Verbenaceae , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Inibidores de 5-alfa Redutase/farmacologia , Colestenona 5 alfa-Redutase , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/farmacologia , Hexanos , Extratos Vegetais/farmacologia
7.
Environ Res ; 200: 111431, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081972

RESUMO

The aim of the present study was: development of activated carbon modified with iron (Fe@AC) and modified with iron and zirconium (Fe-Zr@AC) from the Tectona grandis sawdust (TGS) waste biomass and its potential applicability for the removal of As (III) from contaminated water by batch and column mode. The biomass waste was pre-treated with ferric chloride (FeCl3) and the mixture of FeCl3 and zirconium oxide (ZrO2) and then pyrolyzed at 500 °C for 2 h. The properties of both bioadsorbents were comprehensively characterized by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), Particle Size analysis (PSA), point of zero charge (pHZPC), Brunauer-Emmett-Teller (BET) to prove successful impregnation of the Fe and Zr on the surface of AC of TGS. FTIR analysis clearly indicates the Fe and Fe-Zr complexation on biosorbents surface and biosorption of As (III). The results revealed that maximum As (III) removal was achieved 86.35% by Fe-Zr@AC (3 g/L dose, pH-7.0, temperature-25 °C and concentration 0.5 mg/L). However, maximum removal of As (III) was attained ~75% by Fe@AC (with dose-4g/L, pH-7.0, temperature-25 °C and concentration 0.5 mg/L) at the initial concentration of 0.5 mg/L of As (III). Fe-Zr@AC exhibits higher efficiency with qmax value 1.206 mg/g than Fe@AC with the qmax value 0.679 mg/g for the removal of As(III). While in the column study, Fe-Zr@AC exhibited 98.8% removal at flow rate of 5 mL/min and bed height of 5 cm. Biosorption Isotherm and Kinetics were fitted good with Langmuir isotherm (R2 ≥ 0.99) and followed pseudo-second-order (R2 ≥ 0.99). The regeneration study indicates that the prepared biosorbents efficiently recycled up to five cycles. Therefore, Fe@AC and Fe-Zr@AC derived from TGS has been showed to be novel, effective, and economical biosorbent. The collective benefits of easy development, good affinity towards As (III), good separability, reusability, and inexpensive of magnetized Fe@AC and Fe-Zr@AC make it a novel biosorbent. The application of Fe-Zr@AC for the removal of As (III) from the water was very efficient its concentration in the solution after treatment was found below the 10 µg/L as per the guideline WHO.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Ferro , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Água , Zircônio
8.
Molecules ; 25(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392900

RESUMO

The properties of teak wood, such as natural durability and beautiful color, are closely associated with wood extractives. In order to further understand the performance differences between teak heartwood and sapwood, we analyzed the chemical components of extractives from 12 wood samples using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics approach. In total, 691 metabolites were identified, and these were classified into 17 different categories. Clustering analysis and principal component analysis of metabolites showed that heartwood samples could be clearly separated from sapwood samples. Differential metabolite analysis revealed that the levels of primary metabolites, including carbohydrates, amino acids, lipids, and nucleotides, were significantly lower in the heartwood than in the sapwood. Conversely, many secondary metabolites, including flavonoids, phenylpropanoids, and quinones, had higher levels in the heartwood than in the sapwood. In addition, we detected 16 specifically expressed secondary metabolites in the heartwood, the presence of which may correlate with the durability and color of teak heartwood. Our study improves the understanding of differential metabolites between sapwood and heartwood of teak and provides a reference for the study of heartwood formation.


Assuntos
Lamiaceae/química , Lamiaceae/metabolismo , Metabolômica/métodos , Metabolismo Secundário , Madeira/análise , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Flavonoides/análise , Análise de Componente Principal , Quinonas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
9.
Environ Monit Assess ; 191(Suppl 3): 786, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31989274

RESUMO

Monitoring and assessment of vegetation phenology at the regional to global scale are essential to understand the characteristics of various biophysical parameters in terrestrial ecosystems. Passive optical remote sensing data have been used extensively in the recent past to study phenology of vegetation, also called land surface phenology, at diverse landscapes across the globe. In the present study, the moderate resolution imaging spectroradiometer (MODIS)-derived enhanced vegetation index (EVI) time series data (2000-2013) was used to study the phenology of dry and moist teak (Tectona grandis) forests of different biogeographic provinces of India. Four phenology metrics, viz., start of season (SOS), end of season (EOS), peak of season (POS) and length of season (LOS) were derived using the TIMESAT tool. The SOSs' of dry and moist teak were found during July-August. LOS of moist teak was found to be much longer (~ 48 days) than dry teak. Also, a significant difference of leaf area index (LAI) (~ 2.8) of dry and moist teak forests was noticed during peak season from MODIS LAI product (MOD15A2). Vegetation phenology is greatly responsive to the fluctuation of climatic parameters such as rainfall. Hence, pre-season cumulative rainfall data were analysed to understand the control of rainfall over phenological variations in natural teak forests of India. It was noticed that rainfall was reasonably well correlated with SOS (R2 = 0.57-0.72) for both types of teak forests. The study highlighted the efficacy of time series MODIS EVI data to study the phenological variations in different teak forest types of India in a data-limited situation.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental , Florestas , Índia , Estações do Ano
10.
Am J Bot ; 106(6): 760-771, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31157413

RESUMO

PREMISE: Cambial activity in some tropical trees varies intra-annually, with the formation of xylem rings. Identification of the climatic factors that regulate cambial activity is important for understanding the growth of such species. We analyzed the relationship between climatic factors and cambial activity in four tropical hardwoods, Acacia mangium, Tectona grandis, Eucalyptus urophylla, and Neolamarckia cadamba in Yogyakarta, Java Island, Indonesia, which has a rainy season (November-June) and a dry season (July-October). METHODS: Small blocks containing phloem, cambium, and xylem were collected from main stems in January 2014, October 2015 and October 2016, and examined with light microscopy for cambial cell division, fusiform cambial cells, and expanding xylem cells as evidence of cambial activity. RESULTS: During the rainy season, when precipitation was high, cambium was active. By contrast, during the dry season in 2015, when there was no precipitation, cambium was dormant. However, in October 2016, during the so-called dry season, cambium was active, cell division was conspicuous, and a new xylem ring formation was initiated. The difference in cambial activity appeared to be related to an unusual pattern of precipitation during the typically dry months, from July to October, in 2016. CONCLUSIONS: Our results indicate that low or absent precipitation for 3 to 4 months induces cessation of cambial activity and temporal periodicity of wood formation in the four species studied. By contrast, in the event of continuing precipitation, cambial activity in the same trees may continue throughout the year. The frequency pattern of precipitation appears to be an important determinant of wood formation in tropical trees.


Assuntos
Câmbio/anatomia & histologia , Câmbio/fisiologia , Chuva , Árvores/anatomia & histologia , Árvores/fisiologia , Acacia/anatomia & histologia , Acacia/crescimento & desenvolvimento , Acacia/fisiologia , Câmbio/crescimento & desenvolvimento , Divisão Celular , Eucalyptus/anatomia & histologia , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/fisiologia , Agricultura Florestal , Indonésia , Lamiaceae/anatomia & histologia , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/fisiologia , Rubiaceae/anatomia & histologia , Rubiaceae/crescimento & desenvolvimento , Rubiaceae/fisiologia , Estações do Ano , Especificidade da Espécie , Árvores/crescimento & desenvolvimento
11.
Parasitol Res ; 115(8): 3185-95, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27174028

RESUMO

The use of medicinal plants for the treatment of diseases including malaria is commonplace in Ghanaian traditional medicine, though the therapeutic claims for most plants remain unvalidated. Antiplasmodial activity of the aqueous extracts and successively obtained petroleum ether, ethyl acetate and methanol fractions of the whole Phyllanthus fraternus plant, the leaves of Tectona grandis, Terminalia ivorensis and Bambusa vulgaris, and roots of Senna siamea were studied against Plasmodium falciparum chloroquine-sensitive 3D7 and chloroquine-resistant W2 strains. The aqueous extracts were assessed against human umbilical vein endothelial cells (HUVECs) for cytotoxicity, and the organic solvent fractions against human O(+) erythrocytes for haemolytic effect. Both extracts and fractions demonstrated antiplasmodial activity to varied extents. The aqueous extract of T. ivorensis was the most active (3D7, IC50 0.64 ± 0.14; and W2, IC50 10.52 ± 3.55 µg/mL), and together with P. fraternus displayed cytotoxicity (CC50 6.25 ± 0.40 and 31.11 ± 3.31 µg/mL, respectively). The aqueous extracts were generally selective for 3D7 strain of P. falciparum (selectivity indexes (SIs) ≥3.48) but only that of S. siamea was selective for the W2 strain (SI > 2.1). The organic solvent fractions also displayed antiplasmodial activity with the methanol fractions of P. fraternus and T. grandis, and the fractions of B. vulgaris showing activity with IC50 below 1 µg/mL against P. falciparum 3D7 strain; some fractions showed haemolytic effect but with low to high selectivity indexes (SI ≥ 4). The results while justifying the traditional use of the plant materials in the treatment of malaria, however, suggest their cautious use.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/parasitologia , Phyllanthus/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Linhagem Celular , Cloroquina/farmacologia , Gana , Humanos , Malária Falciparum/tratamento farmacológico , Medicina Tradicional , Folhas de Planta/química , Raízes de Plantas/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia
12.
Plants (Basel) ; 13(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732496

RESUMO

Topolin cytokinins have emerged as valuable tools in micropropagation. This study investigates the metabolism of meta-topolin riboside (mTR) in three distinct tree species: Handroanthus guayacan and Tabebuia rosea (Bignoniaceae), and Tectona grandis (Lamiaceae). Employing labeled N15 mTR, we unraveled the complex mechanisms underlying cytokinin homeostasis, identifying N9-glucosylation as the principal deactivation pathway. Our findings demonstrate a capacity in T. rosea and H. guayacan to reposition the hydroxyl group on the cytokinin molecule, a previously unexplored metabolic pathway. Notably, this study reveals remarkable interfamilial and interspecies differences in mTR metabolism, challenging established perspectives on the role of callus tissue in cytokinin storage. These insights not only illuminate the metabolic intricacies of mTR, a cytokinin with interesting applications in plant tissue culture, but also enhances our understanding of cytokinin dynamics in plant systems, thereby enriching the scientific discourse on plant physiology and cytokinin biology.

13.
Pak J Biol Sci ; 26(4): 177-184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779332

RESUMO

<b>Background and Objective:</b> Diabetes mellitus is characterized by hyperglycemia caused by disturbances in pancreatic ß cells resulting in the formation of reactive oxygen species which in this study was characterized by increased levels of nitric oxide and malondialdehyde in male Wistar rats with diabetes mellitus models. <b>Materials and Methods:</b> Animal modeling of diabetes mellitus using 40 mg kg<sup>1</sup> b.wt. streptozotocin intraperitoneally. The antioxidant activity is based on the ferric reducing antioxidant power (FRAP) method. Determination of nitric oxide and MDA levels using the Griess method and Thiobarbituric Acid Reactive Substances (TBARS) Assay, respectively. The animal models were divided into six treatment groups, normal control (KN), positive control (K<sup>+</sup>) (glibenclamide), negative control (K<sup></sup>) (Na-CMC 0.5%), teak leaf ethanol extract group at a dose of D<sub>1</sub> (100 mg kg<sup>1</sup> b.wt.), D<sub>2</sub> (200 mg kg<sup>1</sup> b.wt.) and D<sub>3</sub> (300 mg kg<sup>1</sup> b.wt.). <b>Results:</b> The antioxidant activity showed that the IC<sub>50</sub> values of vitamin C and the ethanol extract of <i>Tectona grandis</i> leaves were 18.208 and 62.236 µg mL<sup>1</sup>, respectively. The NO levels in KN = 83.133 µmol L<sup>1</sup>, K<sup>+</sup> = 118.300 µmol L<sup>1</sup>, K<sup></sup> = 317.467 µmol L<sup>1</sup>, D<sub>1</sub> = 210.133 µmol L<sup>1</sup>, D<sub>2</sub> = 184.467 µmol L<sup>1</sup> and D<sub>3</sub> = 129.300 µmol L<sup>1</sup>. The MDA levels at KN = 3.767 µmol L<sup>1</sup>, K<sup>+</sup> = 8.854 µmol L<sup>1</sup>, K<sup></sup> = 31.032 µmol L<sup>1</sup>, D<sub>1</sub> = 27.010 µmol L<sup>1</sup>, D<sub>2</sub> = 20.166 µmol L<sup>1</sup> and D<sub>3</sub> = 15.512 µmol L<sup>1</sup>. <b>Conclusion:</b> The ethanol extract of teak leaves <i>Tectona grandis</i> L. at a dose of 300 mg kg<sup>1</sup> reduces nitric oxide levels and plasma malondialdehyde levels in rats through the activity of antioxidant compounds.


Assuntos
Diabetes Mellitus Experimental , Lamiaceae , Masculino , Ratos , Animais , Malondialdeído , Antioxidantes/farmacologia , Óxido Nítrico , Ratos Wistar , Diabetes Mellitus Experimental/tratamento farmacológico , Etanol , Extratos Vegetais/farmacologia
14.
Heliyon ; 9(11): e21698, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027825

RESUMO

The green synthesis of nanoparticles (NPs) utilizing a green path is eco-friendly and profitable compared to traditional physical and chemical techniques. This research conducted a green synthesis of gold NPs (AuNPs) and silver NPs (AgNPs) using an extract of Teak (Tectona grandis) and their anticancer and anti-microbial activities. Various techniques like transmission-electron microscopy (TEM), UV-Vis spectroscopy, thermal-gravimetric analyses (TGA), X-ray diffraction (XRD), and Fourier transform-infrared spectroscopy (FT-IR) were used to analyze synthesized AuNPs and AgNPs. The effects of different factors like the amount of extract used, solution pH, and contact time were measured to obtain the best possible conditions for synthesizing NPs. The AgNPs showed significant anticancer activity against HepG2 with an IC50 of 6.17 mg/ml compared to Teak extract (>50 mg/ml) and AuNPs (44.1 mg/ml), while AuNPs (6 % Teak extract and 2.9 × 10-3 M HAuCl4) showed significant antibacterial and antifungal activity against Pseudomonas aeruginosa, Aspergillus niger, Bacillus subtilis, and Escherichia coli with an inhibition zone of 11 mm, 12 mm, 12.5 mm, and 15.5 mm, respectively as compared to other treatments. These findings confirmed the medical applications of AuNPs and AgNPs and might open new possibilities in this field.

15.
Antioxidants (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978912

RESUMO

Tectona grandis is a traditional Dai medicine plant belonging to the Lamiaceae family, which can be used to treat malaria, inflammation, diabetes, liver disease, bronchitis, tumors, cholelithiasis, jaundice, skin disease and as an anti-helminthic. To find more novel therapeutic agents contained in this medicinal plant, the antioxidant, anti-inflammatory and anti-diabetic activities of T. grandis methanolic extract, fractions and compounds were evaluated. In this study, 26 compounds were isolated from the leaves and branches of T. grandis. Their structures were identified based on extensive spectral experiments, including NMR, ESI-MS and comparison with published spectral data. Among them, compounds 1-2, 4-6, 9-14 and 16-22 were reported for the first time for this plant. The antioxidant activity screening results showed that compounds 5, 15 and 23 had potent antioxidant capacities, with SC50 values from 0.32 to 9.92 µmol/L, 0.92 to 1.10 mmol Trolox/L and 1.02 to 1.22 mmol Trolox/L for DPPH, ABTS and FRAP, respectively. In addition, their anti-inflammatory effects were investigated by releasing TNF-α, IL-1ß and IL-6 through the use of mouse monocytic macrophages (RAW 264.7). Compounds 1, 13, 18 and 23 had the effects of reducing the expression of inflammatory factors. Compounds 13 and 18 were reported for the first time for their anti-inflammatory activities. Furthermore, the methanolic extract (ME), petroleum ether extract (PEE) and EtOAc extract (EAE) of T. grandis showed significant glucose uptake activities; compounds 21 and 23 significantly promoted glucose uptake of 3T3-L1 adipocytes at 40 µM. Meanwhile, compounds 4, 5 and 7 showed significant inhibitory activities against α-glucosidase, with IC50 values of 14.16 ± 0.34 µmol/L, 19.29 ± 0.26 µmol/L and 3.04 ± 0.08 µmol/L, respectively. Compounds 4 and 5 were reported for the first time for their α-glucosidase inhibitory activities. Our investigation explored the possible therapeutic material basis of T. grandis to prevent oxidative stress and related diseases, especially inflammation and diabetes.

16.
Genes (Basel) ; 14(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003041

RESUMO

Teak is a rare tropical tree with high economic value, and it is one of the world's main afforestation trees. Low temperature is the main problem for introducing and planting this species in subtropical or temperate zones. Low-temperature acclimation can enhance the resistance of teak to low-temperature stress, but the mechanism for this is still unclear. We studied the gene expression of two-year-old teak seedlings under a rapid temperature drop from 20 °C to 4 °C using RNA-seq and WGCNA analyses. The leaves in the upper part of the plants developed chlorosis 3 h after the quick transition, and the grades of chlorosis were increased after 9 h, with the addition of water stains and necrotic spots. Meanwhile, the SOD and proline contents in teak leaves increased with the prolonged cold stress time. We also identified 36,901 differentially expressed genes, among which 1055 were novel. Notably, CBF2 and CBF4 were significantly induced by low temperatures, while CBF1 and CBF3 were not. Furthermore, WGCNA successfully identified a total of fourteen modules, which consist of three modules associated with cold stress response genes, two modules linked to CBF2 and CBF4, and one module correlated with the CBF-independent pathway gene HY5. The transformation experiments showed that TgCBF2 and TgCBF4 improved cold resistance in Arabidopsis plants.


Assuntos
Anemia Hipocrômica , Proteínas de Arabidopsis , Arabidopsis , Humanos , Pré-Escolar , Temperatura , Proteínas de Arabidopsis/genética , Transcriptoma/genética , Temperatura Baixa , Arabidopsis/metabolismo , Transativadores/genética
17.
Saudi J Biol Sci ; 29(3): 1456-1464, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280534

RESUMO

Tectona grandis L.f is a timber plant that is commonly referred to as teak. Its wide use as a medicine in the various indigenous systems makes it a plant of importance. A wide gamut of phytoconstituents like alkaloids, phenolic glycosides, steroids, etc. has been reported. A renewed interest in this plant has resulted in scientific investigations by various researchers towards the isolation and identification of active constituents along with scientific proof of its biological activities. The different parts of the plant have been scientifically evaluated for their antioxidant, antipyretic, analgesic, hypoglycemic, wound healing, cytotoxic, and many more biological activities. Documentation of this scientific knowledge is of importance to have consolidated precise information encompassing the various aspects of this plant, which could provide a base for future studies. This review is a compilation of the salient reports on these investigations concerning phytochemistry, the methods used to identify and quantify the constituents, the evaluation methods of the biological activity, toxicological studies, allergies and the patent/patent applications. This will further help researchers to find an area of the gap for future studies.

18.
Nat Prod Res ; 36(7): 1707-1715, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32840145

RESUMO

Chemical investigation of the chloroform extract of heartwood of Tectona grandis L. f. led to the isolation of three new naphthoquinone derivatives, tectonaquinones A (1), B (2) and C (3), along with six known compounds: barleriaquinone-I (4), tectoquinone (5), tecomaquinone I (6), lapachol (7), obtusifolin (8) and 2-hydroxy-3-methyl anthraquinone (9). The structures of the new compounds were elucidated by spectroscopic methods including 2 D NMR experiments. Tectonaquinone B is the first natural compound that has a hexa-cyclic dinaphthofuran-dione scaffold. Tectonaquinone C has a bicyclic acetal motif that is unusual in nature.


Assuntos
Lamiaceae , Naftoquinonas , Verbenaceae , Lamiaceae/química , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química
19.
Materials (Basel) ; 15(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079222

RESUMO

This work presents a first approach concerning the valorization of Tectona Grandis tree by-products, from East Timor through their transformation into high activated carbon (AC) by chemical activation with KOH and K2CO3. The better ACs, Teak-KOH-1-1-700 and Teak-K2CO3-1-2-700, presented a high ABET (995 and 1132 m2·g-1) and micropore volume (0.43 and 0.5 cm3·g-1), respectively. Both ACs were tested on the removal of four pesticides, from the liquid phase. Both ACs performed better than existing commercial types, presenting a maximum adsorption capacity of 1.88, 1.67, 1.10 and 0.89 mmol·g-1, for 4-chloro-2-methylphenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, diuron and atrazine, respectively. Pesticide adsorption from diluted and concentrated solutions confirms that diffusion is the limiting factor. The possibility of implementing a production unit for ACs in East Timor is very promising for that country. It presents an opportunity for job creation, biomass waste reduction and a contribution to environmental sustainability, thereby following the principles of a circular economy.

20.
Microorganisms ; 10(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35630402

RESUMO

Appropriate fertilization can enhance forest productivity by maintaining soil fertility and improving the structure of the bacterial community. However, there is still uncertainty surrounding the effects of combined application of organic and inorganic fertilizers on soil nutrient status and bacterial community structure. A fertilization experiment was set up in an eight-year-old teak plantation with five treatments involved: mixed organic and NPK compound fertilizers (OCF), mixed organic and phosphorus fertilizers (OPF), mixed organic, NPK and phosphorus fertilizers (OCPF), mixed NPK and phosphorus fertilizers (CPF) and no fertilization (CK). Soil chemical properties and bacterial communities were investigated, and the co-occurrence pattern of the bacterial community under different fertilization treatments was compared. The results showed that the contents of soil organic matter and nitrate nitrogen, and the soil pH values were the highest after OCPF treatment, which were 20.39%, 90.91% and 8.16% higher than CK, respectively. The richness and diversity of bacteria underwent no obvious changes, but the structure of the soil's bacterial community was significantly altered by fertilization. Of the dominant bacteria taxa, the relative abundance increased for Gemmatimonadetes, Myxococcota, ADurb.Bin063-13 and Candidatus_Koribacter, and decreased for Chloroflexi, Proteobacteria, JG30-KF-AS9 and Acidothermus under OCPF treatment in comparison to CK. The number of nodes and edges, the average degree and the network density of bacterial community co-occurrence networks were the greatest in OCPF treatment, indicating that application of OCPF could make the network structure of soil bacteria more stable and complex. Moreover, soil pH and organic matter were significantly correlated with bacterial community structure and were considered the main influencing factors. These findings highlight that the combined application of organic, NPK and phosphorus fertilizers is highly beneficial for improving soil quality and optimizing bacterial community structure in teak plantations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA