Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zygote ; 29(6): 503-506, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33883049

RESUMO

The relative mRNA abundance of 10 genes associated with folliculogenesis was compared between late preantral (secondary) and early antral (tertiary) ovarian follicles in goats. In total, 100 follicles in each category were mechanically isolated. The relative transcript abundance of the mRNAs were determined by qPCR. Data were analyzed using unpaired Student's t-test. Of the 10 tested genes, ABLIM mRNA was not detected in either follicle category, six genes (SLIT3, TYMS, GTPBP1, AKR1C4, PIK3R6, and MAOB) were upregulated in secondary follicles compared with tertiary follicles, and three genes (ARHGEF12, CLEC6A, and CYTL1) showed similar mRNA abundances in both secondary and tertiary follicles. In conclusion, SLIT3, GTPBP1, AKR1C4, and PIK3R6 mRNA abundance was upregulated in secondary follicles (preantral phase) compared with in tertiary follicles (antral phase) in goats.


Assuntos
Cabras , Folículo Ovariano , Animais , Feminino , Cabras/genética , RNA Mensageiro/genética
2.
Respir Res ; 18(1): 159, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830544

RESUMO

BACKGROUND: Increased interferon gamma (IFNγ) release occurs in Chronic Obstructive Pulmonary Disease (COPD) lungs. IFNγ supports optimal viral clearance, but if dysregulated could increase lung tissue destruction. METHODS: The present study investigates which mediators most closely correlate with IFNγ in sputum in stable and exacerbating disease, and seeks to shed light on the spatial requirements for innate production of IFNγ, as reported in mouse lymph nodes, to observe whether such microenvironmental cellular organisation is relevant to IFNγ production in COPD lung. RESULTS: We show tertiary follicle formation in severe disease alters the dominant mechanistic drivers of IFNγ production, because cells producing interleukin-18, a key regulator of IFNγ, are highly associated with such structures. Interleukin-1 family cytokines correlated with IFNγ in COPD sputum. We observed that the primary source of IL-18 in COPD lungs was myeloid cells within lymphoid aggregates and IL-18 was increased in severe disease. IL-18 released from infected epithelium or from activated myeloid cells, was more dominant in driving IFNγ when IL-18-producing and responder cells were in close proximity. CONCLUSIONS: Unlike tight regulation to control infection spread in lymphoid organs, this local interface between IL-18-expressing and responder cell is increasingly supported in lung as disease progresses, increasing its potential to increase tissue damage via IFNγ.


Assuntos
Interferon gama/biossíntese , Interleucina-18/biossíntese , Pulmão/metabolismo , Linfócitos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Índice de Gravidade de Doença , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Estudos Longitudinais , Pulmão/patologia , Linfócitos/patologia , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/patologia , Escarro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA