Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 178, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454326

RESUMO

BACKGROUND: The fertile islands formed by shrubs are major drivers of the structure and function of desert ecosystems, affecting seedling establishment, plant-plant interactions, the diversity and productivity of plant communities, and microbial activity/diversity. Although an increasing number of studies have shown the critical importance of soil microbes in fertile island formation, how soil microbial community structure and function are affected by the different fertile island effect intensities is still unknown. As an endangered and dominant shrub species in the West Ordos Desert, Tetraena mongolica was selected for further exploration of its fertile island effect on the soil microbial community in the present study to test the following two hypotheses: (1) T. mongolica shrubs with different canopy sizes exert fertile island effects of different strengths; (2) the soil microbial community structure and function beneath the T. mongolica canopy are affected by the fertile island, and the strength of these effects varies depending on the shrub canopy size. RESULTS: The contents of soil total nitrogen (TN) and available phosphorus (AVP) were significantly greater beneath T. mongolica shrub canopy than outside the shrub canopy. With increasing shrub canopy size, the enrichment of soil TN and AVP increased, indicating a stronger fertile island effect. The structure and function of soil microbial communities, including fungal, archaeal and bacterial communities, are affected by the fertile island effect. An increase in canopy size increased the relative abundance of Ascomycota (Fungi) and Thaumarchaeota (Archaea). For the soil microbial functional groups, the relative abundance of endophytes in the fungal functional groups; steroid hormone biosynthesis, sphingolipid metabolism, and steroid biosynthesis genes in the bacterial functional groups; and nonhomologous end-joining and bisphenol degradation functional genes in the archaeal functional groups increased significantly with increasing T. mongolica canopy size. CONCLUSIONS: These results revealed that T. mongolica had a fertile island effect, which affected the soil microbial community structure and functions, and that the fertile island effect might increase with increasing shrub canopy size. The fertile island effect may strengthen the interaction between T. mongolica shrubs and microbes, which may be beneficial to the growth and maintenance of T. mongolica.


Assuntos
Solo , Zygophyllaceae , Ecossistema , Clima Desértico , Bactérias , China , Esteroides
2.
BMC Plant Biol ; 20(1): 391, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32842966

RESUMO

BACKGROUND: Studying population genetic structure and gene flow of plant populations and their influencing factors is of particular significance in the field of conservation biology, especially important for species such as rare and endangered plants. Tetraena mongolica Maxim. (TM), belongs to Zygophyllaceae family, a rare and endangered plant with narrow distribution. However, for the last decade, due to excessive logging, urban expansion, industrial and tourism development, habitat fragmentation and loss of natural habitats have become major threats to the population of endangered plants. RESULTS: In this study, genetic diversity, population genetic structure and gene flow of TM populations were evaluated by reduced representation sequencing technology, and a total of more than 133.45 GB high-quality clean reads and 38,097 high-quality SNPs were generated. Analysis based on multiple methods, we found that the existing TM populations have moderate levels of genetic diversity, and very low genetic differentiation as well as high levels of gene flow between populations. Population structure and principal coordinates analysis showed that 8 TM populations can be divided into two groups. The Mantel test detected no significant correlation between geographical distances and genetic distance for the whole sampling. Moreover, the migration model indicated that the gene flow is more of a north to south migration pattern in history. CONCLUSIONS: This study demonstrates that the present genetic structure is mainly due to habitat fragmentation caused by urban sprawl, industrial development and coal mining. Our recommendation with respect to conservation management is that, all 8 populations should be preserved as a whole population, rather than just those in the core area of TM nature reserve. In particular, the populations near the edge of TM distribution in cities and industrial areas deserve our special protection.


Assuntos
Fluxo Gênico , Genética Populacional , Zygophyllaceae/genética , China , Espécies em Perigo de Extinção , Estruturas Genéticas , Variação Genética , Filogeografia
3.
Pestic Biochem Physiol ; 166: 104551, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448415

RESUMO

Tetraena mongolica Maxim is a species of Zygophyllaceae endemic to China. Because few insect pests affect its growth and flowering, we speculated that this plant produces defensive chemicals that are insect repellents or antifeedants. The effects of different fractions from crude stem and leaf extracts on Pieris rapae were examined. The results confirmed that the ethyl acetate (EtOAc) fraction from the stems had insecticidal potential. Five compounds were isolated from the EtOAc fraction: a volatile oil [bis(2-ethylhexyl) benzene-1,2-dicarboxylate (1)], three triterpenoids 2E-3ß-(3,4-dihydroxycinnamoyl)-erythrodiol (2), 2Z-3ß-(3,4-dihydroxycinnamoyl)-erythrodiol (3), and 2E-3ß-(3,4-dihydroxyphenyl)-2-propenoate (4)], and one steroid [ß-sitosterol (5)]. Compounds 1-5 exhibited different degrees of insecticidal activity, including antifeedant and growth-inhibition effects. Compounds 1-5 inhibited the activity of carboxylesterase (CarE) and acetylcholinesterase (AChE) to different degrees. Compound 1 had the strongest antifeedant and growth-inhibition effects, and significantly inhibited the activity of CarE and AChE. Our results indicate that compounds 1-4 are the major bioactive insecticidal constituents of Tetraena mongolica. This work should facilitate the development and application of plant-derived botanical pesticides.


Assuntos
Inseticidas , Óleos Voláteis , Triterpenos , Zygophyllaceae , China
4.
DNA Res ; 30(2)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999569

RESUMO

Tetraena mongolica is an endangered xerophytic shrub with high ecological value for the restoration of desert vegetation because of its high tolerance to drought and heat stress. Here, we generated a high-quality chromosome-level reference genome of T. mongolica by combining PacBio HiFi data and Hi-C sequencing technologies, which was approximately 1.12 Gb (contig N50 of 25.5 Mb) in size and contained 61,888 protein-coding genes; repetitive sequences comprised 44.8% of the genome. This genome of T. mongolica is the first published genome sequence of a member of the order Zygophyllales. Genome analysis showed that T. mongolica has undergone a recent whole genome duplication event, and a recent burst of long terminal repeat insertions afterward, which may be responsible for its genome size expansion and drought adaptation. We also conducted searches for gene homologues and identified terpene synthase (TPS) gene families and candidate genes involved in triacylglycerol biosynthesis. The T. mongolica genome sequence could aid future studies aimed at functional gene identification, germplasm resource management, molecular breeding efforts, as well as evolutionary studies of Fabids and angiosperm taxa.


Assuntos
Cromossomos , Genoma , Anotação de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Genoma de Planta
5.
Plants (Basel) ; 12(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903909

RESUMO

Soil microorganisms play crucial roles in improving nutrient cycling, maintaining soil fertility in desert ecosystems such as the West Ordos desert ecosystem in Northern China, which is home to a variety of endangered plants. However, the relationship between the plants-microorganisms-soil in the West Ordos desert ecosystem is still unclear. Tetraena mongolica, an endangered and dominant plant species in West Ordos, was selected as the research object in the present study. Results showed that (1) there were ten plant species in the Tetraena mongolica community, belonging to seven families and nine genera, respectively. The soil was strongly alkaline (pH = 9.22 ± 0.12) and the soil nutrients were relatively poor; (2) fungal diversity was more closely related to shrub diversity than bacterial and archaeal diversity; (3) among the fungal functional groups, endomycorrhizal led to a significant negative correlation between shrub diversity and fungal diversity, because endomycorrhizal had a significant positive effect on the dominance of T. mongolica, but had no significant effect on other shrubs; (4) plant diversity had a significant positive correlation with the soil inorganic carbon (SIC), total carbon (TC), available phosphorus (AVP) and available potassium (AVK). This study revealed the effects of soil properties and soil microorganisms on the community structure and the growth of T. mongolica and provided a theoretical basis for the conservation of T. mongolica and the maintenance of biodiversity in desert ecosystems.

6.
Front Genet ; 13: 1026919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568371

RESUMO

A comprehensive understanding of genetic background for rare species will provide an important theoretical basis for the future species management, monitoring and conservation. Tetraena mongolica is restrictedly distributed in the western Ordos plateau of China and has been listed as a national protected plant. We generated 13 chloroplast (cp) genomes of T. mongolica (size range of 106,062-106,230 bp) and conducted a series of comparative analyses of six Zygophyllaceae cp genomes. T. mongolica cp genome exhibited a quadripartite structure with drastically reduced inverted repeats (IRs, 4,315 bp) and undergone the loss of a suit of ndh genes and a copy of rRNAs. Furthermore, all the T. mongolica populations were divided into two genetic groups based on complete cp phylogenomics. In addition, notably variable genome size, gene order and structural changes had been observed among the six Zygophyllaceae cp genomes. Overall, our findings provide insights into the cp genome evolution mode and intraspecific relationships of T. mongolica, and provide a molecular basis for scientific conservation of this endangered plant.

7.
Genes (Basel) ; 11(3)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197402

RESUMO

Tetraena mongolica is a xerophytic shrub endemic to desert regions in Inner Mongolia. This species has evolved distinct survival strategies that allow it to adapt to hyper-drought and heterogeneous habitats. Simple sequence repeats (SSRs) may provide a molecular basis in plants for fast adaptation to environmental change. Thus, identifying SSRs and their possible effects on gene behavior has the potential to provide valuable information for studies of adaptation. In this study, we sequenced six individual transcriptomes of T. mongolica from heterogeneous habitats, focused on SSRs located in genes, and identified 811 polymorphic SSRs. Of the identified SSRs, 172, 470, and 76 were located in 5' UTRs, CDSs, and 3' UTRs in 591 transcripts; and AG/CT, AAC/GTT, and AT/AT were the most abundant repeats in each gene region. Functional annotation showed that many of the identified polymorphic SSRs were in genes that were enriched in several GO terms and KEGG pathways, suggesting the functional significance of these genes in the environmental adaptation process. The identification of polymorphic genic SSRs in our study lays a foundation for future studies investigating the contribution of SSRs to regulation of genes in natural populations of T. mongolica and their importance for adaptive evolution of this species.


Assuntos
Adaptação Fisiológica , Repetições de Microssatélites , Transcriptoma , Zygophyllaceae/genética , Ecossistema , Evolução Molecular , Polimorfismo Genético
8.
Artigo em Inglês | MEDLINE | ID: mdl-32708726

RESUMO

Tetraena mongolica is a rare and endangered species unique to China. The total number and density of Tetraena mongolica shrubs in desertification areas have experienced a sharp decrease with increases in coal mining activities. However, available information on the T. mongolica rhizosphere soil quality and microbial properties is scarce. Here, we investigated the effect of coal mining on the soil bacterial community and its response to the soil environment in the T. mongolica region. The results showed that the closer to the coal mining area, the lower the vegetation coverage and species diversity. The electrical conductivity (EC) in the contaminated area increased, while the total nitrogen (TN), available phosphorus (AP), available potassium (AK), and soil organic carbon (SOC) decreased. The activity of ß-glucosidase, urease, alkaline phosphatase, and catalase further decreased. In addition, the mining area could alter the soil's bacterial abundance and diversity. The organic pollutant degradation bacteria such as Sphingomonas, Gemmatimonas, Nocardioides, and Gaiella were enriched in the soil, and the carbon-nitrogen cycle was changed. Canonical correspondence analysis (CCA) and Pearson's correlation coefficients showed that the change in the bacterial community structure was mainly caused by environmental factors such as water content (SWC) and EC. Taken together, these results suggested that open pit mining led to the salinization of the soil, reduction the soil nutrient content and enzyme activity, shifting the rhizosphere soil microbial community structure, and altering the carbon-nitrogen cycle, and the soil quality declined and the growth of T. mongolica was affected in the end. Therefore, the development of green coal mining technology is of great significance to protect the growth of T. mongolica.


Assuntos
Rizosfera , Solo , Carbono , China , Microbiologia do Solo
9.
PeerJ ; 6: e5645, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258729

RESUMO

Tetraena mongolica Maxim (Zygophyllaceae) is an endangered species endemic to western Inner Mongolia and China, and is currently threatened by habitat loss and human over-exploitation. We explored the genetic background, its genetic diversity, population structure, and demographic history, based on 12 polymorphic nuclear microsatellite loci. Our results indicated high genetic diversity in extant populations, but no distinguishable gene cluster corresponding with a specific biogeography. Population demography analysis using a MSVAR indicated a strong, recent population decline approximately 5,455 years ago. These results suggest that the Yellow River and Zhuozi Mountain range may not prevent pollination between populations. Finally, we surmised that the population demography of T. mongolica was likely to have been affected by early mankind activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA